南岭山地浓雾的宏微观物理特征综合分析
COMPREHENSIVE ANALYSIS OF THE MACRO- AND MICRO-PHYSICAL CHARACTERISTICS OF DENSE FOG IN THE AREA SOUTH OF THE NANLING MOUNTAINS
-
摘要: 通过对南岭山地进行的雾野外观测资料以及数值试验的综合分析,得到了南岭山地浓雾和能见度的季节分布特征、雾滴谱微观特征与浓雾形成的物理概念图像。在秋末和冬春季节,南岭山地恶劣能见度出现的频率很高,能见度≤200m浓雾过程的出现频率平均为24.7%,最高可达41.8%;冬春季节南岭山地出现的雾是复杂的微物理过程、局地地形、水汽输送与影响天气系统等宏微观相互作用的结果,属于平流雾、爬坡雾类型,与辐射雾明显不同,局地山地抬升冷却凝结对雾的形成起重要的作用,迎风坡对雾的形成有利,在海拔较低的迎风坡也可能出现浓雾,从而导致低能见度;南岭山地的雾以小滴谱为主,数密度比城市雾小,小粒子段谱型基本呈下降趋势;在多个微观变量中,含水量与能见度的反相关性最好;雾含水量等微结构特征量的起伏变化,与雾体本身的微物理过程有关外,雾体随环境风的平移过程中,不规则的爬坡、翻越山坡的运动是造成雾体微结构不均匀、振荡起伏变化的重要原因。Abstract: Using the composite field observational data collected in the area south of the Nanling mountains and numerical modeling,the seasonal features of dense fog and visibility,fog drop spectrum and physical concept of fog forming have been analyzed.The occurring frequency of low visibility(≤200m) is very high with a mean of 24.7%,a maximum of 41.8% from the end of autumn to winter and next spring.The fog processes that occurred in the area south of the Nanling mountains in spring and winter resulted from the interactions of complicated micro-physical processes,the local terrain,water vapor transportation and the influencing weather system.The fog processes are arisen from advection or windward slope,which is much different from the radiation fog.Cooling condensation due to the air lifted by the local mountain plays an important role in fog formation.Windward slope of the mountain is favorable to the fog formation.Dense fog can occur at lower altitudes in the windward slope of mountain,resulting in the lower visibility.The fog is mainly of small-drop spectrum with smaller number-density than that of urban fog,and its drop spectrum has descending trend in the section of smaller diameter.The inverse relationship between fog water content and visibility is the best among several relationships of micro-variables.In addition to micro-physical processes of fog body itself,the motion of irregular climbing and crossing over hillside while the fog body is being transported by the wind are also important reasons for the fluctuation of micro-physical parameters such as fog water content.
-
Key words:
- dense fog /
- visibility /
- weather system /
- fog drop spectrum /
- fog water content
-
[1] 刘小宁,张洪政,李庆祥,等.我国大雾的气候特征及变化初步解释[J].应用气象学报,2006,16(2):220-271. [2] 徐怀刚,邓北胜,周小刚,等.雾对城市边界层和城市环境的影响[J].应用气象学报,2002,13(增刊):170-176. [3] 吴兑,邓雪娇,叶燕翔,等.南岭大瑶山浓雾雾水的化学成分研究[J].气象学报,2004,62(4):476-485. [4] 吴兑,邓雪娇,范绍佳,等.南岭大瑶山雾区锋面降水的雨水化学成分研究[J].中山大学学报,2005,44(6):105-109. [5] 吴兑,邓雪娇,叶燕翔,等.岭南山地气溶胶物理化学特征研究[J].高原气象,2006,25(5):877-885. [6] 张利民,石春娥,杨军,等.雾的数值模拟研究[M].北京:气象出版社,2002. [7] 史月琴,邓雪娇,胡志晋,等.一次山地浓雾的三维数值研究[J].热带气象学报,2006,22(4):351-359. [8] 吴兑,邓雪娇,游积平,等.南岭山地高速公路雾区能见度预报系统[J].热带气象学报,2006,22(5):417-422. [9] 李子华,彭中贵.重庆市冬季雾的物理化学特征[J].气象学报,1994,52S(4):477-483. [10] 李子华,吴君.重庆市区冬季雾滴谱特征[J].南京气象学院学报,1995,18(1):46-51. [11] 王凯,张宏升,王强,等.北方地区春冬季雾天边界层结构及其演变规律的对比研究[J].北京大学学报(自然科学版),2006,42(1):55-60. [12] 张光智,卞林根,王继志,等.北京及周边地区雾形成的边界层特征[J].中国科学D辑,2005,35(增刊Ⅰ):78-83. [13] 鲍宝堂,束家鑫,朱炳权.上海城市雾理化特征的研究[J].南京气象学院学报,1995,18(1):114-118. [14] 郭恩铭,刘延刚,束家鑫.黄浦江雾宏微观结构研究[J].北京气象学院学报,1990,1:46-49. [15] 李子华,黄建平,周毓荃,等.1996年南京连续5天浓雾的物理结构特征[J].气象学报,1999,57(5):622-631. [16] 葛良玉,江燕如,梁汉明,等.1996年岁末沪宁线持续5天大雾的原因探讨[J].气象科学,1998,18(2):181-188. [17] 黄玉生,黄玉仁,李子华,等.西双版纳地区冬季雾的微物理结构及演变过程[J].气象学报,2000,55(6):715-725. [18] 黄玉仁,沈鹰,黄玉生,等.城市化对西双版纳辐射雾的影响[J].高原气象,2001,20(2):186-190. [19] 杨中秋,许绍祖,耿骠.舟山地区春季海雾的形成和微物理结构[J].海洋学报,1989,11(4):431-438. [20] 李子华.中国近40年来雾的研究[J].气象学报,2001,59(5):616-624. [21] TAYLOR G L.The formation of fog and mist[J].Quart J Roy Meteor Soc,1917,43:241-268. [22] WILLET H C.Fog and haze[J].Mon Wea Rev,1928,56:435-467. [23] DUYNKERKE P G.Radiation fog:A comparision of model simulation with detailed observations[J].Mon Wea Rev,1991,119:324-341. [24] GUEDALIA D,BERGOT T.Numerical forecasting of radiation fog.Part II:A comparison of model simulation with several observed fog events[J].Mon Wea Rev,1994,122:1231-1246. [25] PAGOWSKI M,GULTEPE I,KING P.Analysis and modeling of an extremely dense fog event in southern Ontario[J].Journal of applied meteorology,2004,43:3-16. [26] BERGOT T,CARRER D,NOILHAN J,et al.Improved site-specific numerical prediction of fog and low clouds:A feasibility[J].Weather and Forecasting,2005,20:627-646. [27] BENDIX J.A case study on the determination of fog optical depth and liquid water path using AVHRR data and relations to fog liquid water content and horizontal visibility[J].International Journal of Remote Sensing,1995,16(3):515-530. [28] BENDIX J,THIES B,CERMAX J,et al.Ground fog detection from space based on MODIS daytime data-A feasibility study[J].Weather and Forecasting,2005,20:989-1005. [29] CHUNG Y S,KIM H S,YOON M B.Observations of visibility and chemical compositions related to fog,mist and haze in south KOREA[J].Water Air and Soil pollution,1999,111:139-157. [30] TONNA G.Backscattering,extinction and liquid water content in fog:a detailed study of their relations for use in lidar systems[J].Applied Optics,1991,30(9):1132-1140. [31] 邓雪娇,吴兑,叶燕翔.南岭山地浓雾的物理特征[J].热带气象学报,2002,18(3):227-237. [32] 唐浩华,范绍佳,吴兑,等.南岭山地浓雾的微物理结构及演变过程[J].中山大学学报,2002,41(4):92-96. [33] BOTT A,SIEVERS U,ZDUNKOWSKI W.A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics[J].J Atmos Sci,1990,147:2153-2166.
点击查看大图
计量
- 文章访问数: 988
- HTML全文浏览量: 0
- PDF下载量: 1424
- 被引次数: 0