[1] |
HARNOS D S, S W NESBITT. Convective structure in rapidly intensifying tropical 485 cyclones as depicted by passive microwave measurements[J]. Geophys Res Lett, 2011, 38(7): 1-5.
|
[2] |
RAPPAPORT E N, FRANKLIN JL, AVILA LA, et al. Advances and challenges at the national hurricane center[J]. Wea Forec, 2009, 24(2): 305-419.
|
[3] |
陈联寿.热带气旋研究和业务预报技术的发展[J].应用气象学报, 2006, 17(6): 672-681.
|
[4] |
EMANUEL K. An air-sea interaction theory for tropical cyclones, Part Ⅰ: Steady-state maintenance[J]. J Atmos Sci, 1985, 43(6): 585-604.
|
[5] |
郑静, 费建芳, 蒋国荣, 等.海气相互作用对热带气旋发生发展影响研究综述[J].海洋预报, 2008, 25(1): 56-64.
|
[6] |
蒋小平, 刘春霞, 莫海涛, 等.海气相互作用对台风结构的影响[J].热带气象学报, 2010, 26(1): 55-59.
|
[7] |
BLACK M L, J F GAMACHE, F D MARKS JR, et al. Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity[J]. Mon Wea Rev, 2002, 130(9): 2291-2312.
|
[8] |
余晖, 费亮, 端义宏. 8807和0008登陆前的大尺度环境特征与强度变化[J].气象学报, 2002, 60(增刊): 78-87.
|
[9] |
丁治英, 邢蕊, 徐海明, 等.南亚高压南部环境位涡对台风加强的影响分析[J].热带气象学报, 2012, 28(5): 675-686.
|
[10] |
端义宏, 秦增灏, 顾建峰.海温变化对热带气旋强度影响的数值实验 (Ⅰ)——热带气旋强度的数值模拟和海温实验[M]//台风科学、业务实验和天气动力学理论的研究第三分册.北京:北京气象出版社, 1996: 129-134.
|
[11] |
CIONE, JOSEPH J, EVAN A KALINA, et al. Observations of air-sea interaction and intensity change in hurricanes[J]. Mon Wea Rev, 2013, 141(7): 2368-2382.
|
[12] |
HILL K A, KEVIN A, LACKMANN G M. Influence of environmental humidity on tropical cyclone size[J]. Mon Wea Rev, 2009, 137(10): 3294-3315.
|
[13] |
于玉斌, 赵大军, 陈联寿.干冷空气活动对超强台风"桑美"(2006) 近海突然增强影响的数值模拟研究[J].热带气象学报, 2015, 31(1): 21-31.
|
[14] |
KAPLAN J, M DEMARIA, J KNAFF. A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins[J]. Wea Forec, 2010, 25(1): 220-241.
|
[15] |
WANG B, X ZHOU. Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific[J]. Meteorol Atmos Phy, 2008, 99(1): 1-16.
|
[16] |
HENDRICKS E A, M S PENG, FU B, et al. Quantifying environmental control on tropical cyclone intensity change[J]. Mon Wea Rev, 2010, 138(8): 3243-3271.
|
[17] |
HENDRICKS E A, MONTGOMERY M T, DAVIS C A. The role of vortical hot towers in the formation of Tropical Cyclone Diana (1984)[J]. J AtmosSci, 2004, 61(11): 1209-1232.
|
[18] |
MONTGOMERY M T, NICHOLLS M E, CRAM T A, et al. A vortical hot tower route to tropical cyclogenesis[J]. J Atmos Sci, 2006, 63(1): 355-386.
|
[19] |
BRAUN S A, MONTGOMERY M T, PU Z. High-resolution simulation of Hurricane Bonnie (1998), Part Ⅰ: The organization of eyewall vertical motion[J]. J AtmosSci, 2006, 63(1): 19-42.
|
[20] |
Ge X Y, XUW, ZHOUS W. Sensitivity of tropical cyclone intensification to inner-core structure[J]. Adv Atmos Sci, 2015, 32(10): 1407-1418.
|
[21] |
FANG J, ZHANGF Q. Evolution of multi-scale vortices in the development of Hurricane Dolly (2008)[J]. J Atmos Sci, 2011, 68(1): 103-122.
|
[22] |
GROSS J M. North Atlantic and East Pacific track and intensity verification for 2000[C]//Minutes of the 55th Interdepartmental Hurricane Conference, Miami, FL, Office of the Federal Coordinator for Meteorological Services and Supporting Research, NOAA, 2001: B12-B15.
|
[23] |
DEMARIA M, ZEHR R M, KOSSIN J P, et al. The use of GOES imagery in statistical hurricane intensity prediction[C]//25th Conference on Hurricanes and Tropical Meteorology. San Diego: American Meteorological Society, 2002: 120-121.
|
[24] |
ROGERS R, REASOR P, LORSOLO S. Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones[J]. Mon Wea Rev, 2013, 141(9): 2970-2991.
|
[25] |
CHEN D Y, CHEUNG K K W, LEE C S. Some implication of core regime wind structures in western North Pacific tropical cyclones[J]. Wea Forec, 2011, 26(1): 61-75.
|
[26] |
CARRASCO C, LANDSEAC, LIN Y. The influence of tropical cyclone size on its intensification[J]. Wea Forec, 2014, 29(3): 582-590.
|
[27] |
XU J, WANG Y. Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size[J]. Mon Wea Rev, 2010, 138(11): 4135-4157.
|
[28] |
KNAFF J A, DEMARIAM, MOLENAR D A. An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis[J]. J Appl Meteor Climatol, 2011, 50(10): 2149-2166.
|
[29] |
SCHECTER D A, DUBIN D H E. Vortex motion driven by a background vorticity gradient[J]. Phy Rev Lett, 1999, 83(11): 2191-2194.
|