IMPACT OF WARMER OCEAN SURFACE TEMPERATURE ON THE TROPICAL CYCLONE DESTRUCTIVE POTENTIAL OVER WESTERN NORTH PACIFIC: ANALYSIS OF HIGH-RESOLUTION CASE SIMULATIONS
-
摘要: 以三个西北太平洋热带气旋(TC)为例,利用WRF(Weather Research and Forecasting)模式进行了一系列海表温度(SST)敏感性数值试验,揭示了西北太平洋SST增暖对TC的强度、尺度及潜在破坏力的影响及其机理。结果表明,在距TC中心100 km以内区域的SST升高有利于TC强度增加,但会减小TC内核尺度;而在距TC中心100 km以外的SST升高并不会使TC强度明显增加甚至使TC强度减弱,但同时会增加TC内核尺度。伴随着低层向眼墙的入流,升高的外区SST会使TC区表层的大气温度和湿度升高,造成眼墙附近海气温差和湿度差及向内的气压梯度力减小,进而减少进入TC眼墙内的感热和潜热,不利于TC增强,但有利于眼墙向外移动,使TC内核尺度增加。内区SST升高与外区SST升高对TC强度及尺度变化的作用机理相反。因此,当TC移过冷或暖洋面时,TC的强度和尺度的变化不仅取决于局地洋面的冷或暖状况,还取决于TC内区和外区SST的差异。由于TC内区和外区SST对TC强度和内核尺度的不同作用,可能存在一个临界范围,当暖池范围在这个临界范围之内时TC潜在破坏力随暖池范围的扩大而增大,但当暖池范围超过这个临界范围时TC潜在破坏力便不会随着暖池范围的继续扩大而增大,甚至会有所减小。Abstract: To reveal the impact of increased sea surface temperature (SST) on TC destructive potential over the western North Pacific(WNP), a series of SST sensitivity experiments with the Weather Research and Forecasting (WRF) model is conducted for three tropical cyclone (TC) cases in the WNP. The results show that, the SST increases over different radial extents play different roles in determining TC intensity, size, and potential destructiveness. The inner SST increase within approximately 100 km of TC center promotes TC intensification, but reduces TC inner-core size. In contrast, the outer SST beyond 100 km of the TC center contributes greatly to the growth of TC inner-core size, but reduces TC intensity. Further analysis indicates that, as the inflow air moves towards the eyewall, warmer outer SST can gradually increase the underlying surface air temperature and moisture, reduce the inward-directed pressure gradient near the eyewall, and thus decrease the air-sea temperature and moisture differences, which will lead to less sensible and latent heat fluxes entering the eyewall and then decrease the TC intensity, but with an outward centrifugal displacement of eyewall and thus an increase in the TC inner-core size. The opposite happens as the inner SST increases. Therefore, when a TC moves across a warm/cold pool, the changes of TC intensity and size are determined by not only the conditions of local SST, but also the SST difference between the inner and outer TC regions. Due to the different effects of inner-SST and outer-SST on TC intensity and inner-core size, the TC potential destructiveness does not monotonically increase with the expansion of the ocean warm pool. There exists a critical range of the ocean warm pool. The TC potential destructiveness may not increase and may even decrease once the size of ocean warm pool exceeds the critical range.
-
表 1 三个台风个例的控制试验设置
TC名 Songda(2004) Megi(2010) Vongfong(2014) 母网格中心经纬度 137.5 °E, 28 °N 127 °E, 22 °N 137.66 °E, 25.47 °N 母网格数 221×205 159×179 252×164 两重网格使用的物理方案 WSM3简单冰微物理方案[17] KFEX积石参数化方案[18] MYJ边界层方案[19-20] Thmopson物理方案[21]、KFEX积云参数化方案[18]以及MYJ边界层方案[19-20] WSM3简单冰微物理方案[17] KFEX积云参数化方案[18] YSU边界层方案网[22] 母网格模拟时间 2004年8月26日00时-9月7日00时(12天) 2010年10月14日00时-23日00时(9天) 2014年10月1日00时-14日00时(13天) 子网格模拟时间 2004年8月30日18时-9月7日00时(7天) 2010年10月15日00时-23日00时(8天) 2014年10月6日00时-14日00时(8天) -
[1] 秦大河.气候变化的事实与影响及对策[J].中国科学基金, 2003, 17(1): 1-3. [2] GLEICK P H, ADAMSR M, AMASINOR M, et al. Climate change and the integrity of science[J]. Sci, 2010, 328(5 979): 689-690. [3] EMANUEL K A. An air-sea interaction theory for tropical cyclone, PartⅠ: Steady state maintenance[J]. J Atmos Sci, 1986, 43(6): 585-604. [4] HOLLAND G J. The maximum potential intensity of tropical cyclones[J]. J Atmos Sci, 1997, 54(21): 2 519-2 541. [5] CHAN J C L, LIU K S. Global warming and western North Pacific typhoon activity from an observational perspective[J]. J Clim, 2004, 17(23): 4 590-4 602. [6] EMANUEL K A. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7 051): 686-688. [7] WEBSTER P J, HOLLAND G J, CURRY J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5 742): 1 844-1 846. [8] 张颖, 王会军.全球变暖背景下西北太平洋地区台风活动背景场气候变化的预估[J].气象学报, 2010, 68(4): 539-549. [9] SUN Y, ZHONG Z, YI L, et al. The opposite effects of inner and outer sea surface temperature on tropical cyclone intensity[J]. J Geophys Res Atmos, 2014, 119(5): 2 193-2 208. [10] BENGTSSON L, BOTZET M, ESCH M. Will greenhouse gas induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?[J]. Tellus, 1996, 48(1): 57-73. [11] CHAN J C L. Comments on "Changes in tropical cyclone number, duration and intensity in a warming environment"[J]. Science, 2006, 311(5 768): 1 713. [12] 雷小途, 徐明, 任福明.全球变暖对台风活动影响的研究进展[J].气象学报, 2009, 67(5): 679-688. [13] SUN Y, ZHONG Z, HA Y, et al. The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity[J]. Acta Meteorologica Sin, 2013, 27(1): 40-49. [14] VECCHI G A, SWANSON K L, SODEN B J. Whither hurricane activity[J]. Science, 2008, 322(5 902): 687-689. [15] KNUTSON T R, MCBRIDEJ L, CHANJ, et al. Tropical cyclones and climate change[J]. Nat Geosci, 2010, 3(3): 157-163. [16] LIN I-I, CHANJ C L. Recent decrease in typhoon destructiveness potential and global warming implications[J]. Nat Communi, 2015, 6, doi: 10.1038/ncomms8182. [17] HONG S-Y, DUDHIA J, CHEN S-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon Wea Rev, 2004, 132(1): 103-120. [18] KAIN J S, FRITSCHJ M. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. J Atmos Sci, 1990, 47(23): 2 784-2 802. [19] MELLOR G L, YAMADAT. A hierarchy of turbulence closure models for planetary boundary layer[J]. J Atmos Sci, 1974, 31(7): 1 791-1 806. [20] JANJIC Z I. The Mellor-Yamada level 2.5 turbulence closure scheme in the NCEP Eta Model[M]//World Meteorological Organization publications-WMO TD, 1996: 4.14-4.15. [21] THOMPSON G, R M RASMUSSEN, K MANNING. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme, PartⅠ: Description and sensitivity analysis[J]. Mon Wea Rev, 2004, 132(2): 519-542. [22] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2 318-2 341. [23] WANG Y. Vortex Rossby waves in a numerically simulated tropical cyclone, Part Ⅱ: The role in tropical cyclone structure and intensity change[J]. J Atmos Sci, 2002, 59(7): 1 239-1 262.