RESEARCH PROGRESS ON THE IMPACT OF EXTRATROPICAL TRANSITION OF TROPICAL CYCLONE ON THE DOWNSTREAM FLOW
-
摘要: 热带气旋(TC)在向高纬度地区移动过程中往往会转变为温带气旋,称之为温带变性(ET)过程。ET过程涉及到热带系统与中纬度环流的复杂相互作用,并对局地系统直至大范围环流均产生影响,这种影响甚至向下游延伸到半球的尺度。由于ET过程及其下游影响给中纬度地区带来严重灾害性天气,而对其的预报一直是一个难题,因而关于此问题的科学研究和业务预报是近年来国际上的一个热点,国内的有关工作也已开展。从TC在ET过程中与中纬度环流的相互作用、ET过程对中纬度下游环流的影响和ET过程及其下游影响的数值预报三个方面总结和分析了近年来国内外的有关研究进展,为国内学术界进一步开展相关研究提供参考。主要进展包括:(1) TC高层出流输出低位涡(PV)空气改变温带上层结构以及TC环流直接作用于中纬度流是TC-中纬度流相互作用的主要方式;TC相对于上游槽的位置对ET过程及其下游影响很关键;各种物理过程在相互作用中起到不同的作用;(2) TC所激发的Rossby波在与急流相联系的上层PV梯度上向下游频散是下游发展的主要方式;下游发展具有显著的边界俘获和上下层耦合发展的特征;(3) 目标观测、集合预报和变分同化等技术的发展提高了ET及其下游影响的数值预报水平。Abstract: As a tropical cyclone(TC) moves northward, it often transforms into an extratropical cyclone, which is known as an extratropical transition (ET) process. An ET process involves the complex interaction between the tropical systems and the midlatitude flows, which not only changes the local atmospheric state around a TC but also affects the atmospheric circulations over a larger region. Especially, the downstream impacts are much more obvious. ET and its downstream impact often lead to serious disasters in the midlatitudes, and its accurate forecast is still difficult. Therefore, scientific research and operational forecasts concerning the ET process and its downstream impact become current hotspots. In this work, the international and domestic progress in the interaction of TCs with midlatitude flows, the downstream impacts of ET systems, the numerical forecast of the downstream impacts are summed up and analyzed.
-
图 1 信号的垂直剖面的时间序列[47]
信号定义为敏感性试验和控制试验的高度场的预报差值,35~45 °N之间绝对值大于10个位势米的信号用于计算经向平均。
图 2 区域80~20 °W,30~60 °N内200 hPa高度上2003年9月6日00 UTC时刻的非地转位势通量矢量图[47]
图 3 2003年9月9日00 UTC时刻47 °N的垂直非地转位势通量的垂直剖面[47]
图 4 台风“马勒卡”的最佳路径和各次TC数值试验的模拟路径[51]
黑色线为对照试验,红色线为增强试验,蓝色线为减弱试验,绿色线为西北移动试验,棕色线为东南移动试验,紫色线为最佳路径。
-
[1] 孙红梅, 汤杰, 雷小途.不同数据集下西北太平洋热带气旋变性特征的比较[J].热带气象学报, 2014, 30(3):443-454. [2] 危国飞, 朱佩君, 江佳.西北太平洋热带气旋变性过程结构演变及其环境分析[J].热带气象学报, 2014, 30(3): 473-482. [3] 袁娟娟, 丁治英, 王莉. 1949—2007年登陆我国变性热带气旋的特征统计及合成分析[J].热带气象学报, 2011, 27(4):529-541. [4] JONES S C, HARR P A, ABRAHAM J, et al. The extratropical transition of tropical cyclone:forecast challenges, current understanding, and future directions[J]. Wea Forec, 2003, 18(6): 1 052-1 092. [5] BISHOP C H, THORPE A J. Potential vorticity and the electrostatics analogy: Quasigeostrophic theory[J]. Q J Roy Meteor Soc, 1994, 120(517): 713-731. [6] SIMMONS A J, HOSKINS B J. Downstream and upstream development of unstable baroclinic waves[J]. J Atmos Sci, 1979, 36(7): 1 239-1 254. [7] DAVIS C A, STOELINGA M T, KUO Y H. The integrated effect of condensation in numerical simulations of extratropical cyclogenesis[J]. Mon Wea Rev, 1993, 121(8): 2 309-2 330. [8] STOELINGA M T. A potential vorticity based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone[J]. Mon Wea Rev, 1996, 124(5): 849-874. [9] HENDERSON J M, LACKMANN G M, GYAKUM J R. An analysis of Hurricane Opal's forecast track errors using quasigeostrophic potential vorticity inversion[J]. Mon Wea Rev, 1999, 127(3): 292-307. [10] MASSACAND A C, WERNLI H, DAVIES H C. Influence of upstream diabatic heating upon an Alpine event of heavy precipitation[J]. Mon Wea Rev, 2001, 129(11): 2 822-2 828. [11] HOSKINS B J, BERRISFORD P. A potential vorticity perspective of the storm of 15—16 October 1987[J]. Wea, 1988, 43(3): 122-129. [12] MARTIUS O, SCHWIERZ C, DAVIES H C. Far-upstream precursors of heavy precipitation events on the Alpine south-side[J]. Q J Roy Meteor Soc, 2008, 134(631): 417-428. [13] AGUST′I P A, THORNCROFT C D, CRAIG G C, et al. The extratropical transition of hurricane Irene(1999): A potential vorticity perspective[J]. Q J Roy Meteor Soc, 2004, 130(598): 1 047-1 074. [14] HARR P A, DEA J M. Downstream development associated with the extratropical transition of tropical cyclones over the Western North Pacific[J]. Mon Wea Rev, 2009, 137(4): 1 295-1 319. [15] HARR P A, ANWENDER D, JONES S C. Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005)[J]. Mon Wea Rev, 2008, 136(9): 3 205-3 225. [16] CORBOSIERO K L, DICKINSON M J, BOSART L F. The contribution of eastern north pacific tropical cyclones to the rainfall climatology of the Southwest United States[J]. Mon Wea Rev, 2009, 137(8): 2 415-2 435. [17] SCHUMACHER R S, GALARNEAU T J, BOSART L F. Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A High-Impact predecessor rain event[J]. Mon Wea Rev, 2011, 139(2): 650-667. [18] ERTEL H. Ein neuer hydrodynamischer Wirbelsatz[J]. Meteor Z, 1942, 59: 271-281. [19] SCHWIERZ C, DIRREN S, DAVIES H C. Forced waves on a zonally aligned jet[J]. J Atmos Sci, 2004, 61(1): 73-87. [20] FERREIRA R N, SCHUBERT W H. The role of tropical cyclone in the formation of tropical upper-tropospheric troughs[J]. J Atmos Sci, 1999, 56(16): 2 891-2 907. [21] SARDESHMUKH P D, HOSKINS B J. The generation of global rotational flow by steady idealized tropical divergence[J]. J Atmos Sci, 1988, 45(7): 1 228-1 251. [22] RIEMER M, JONES S C, MAJEWSKI D. The impact of extratropical transition on the downstream flow: An idealized modelling study with a straight jet[J]. Q J Roy Meteor Soc, 2008, 134(1): 69-91. [23] GRAMS C M, JONES S C, DAVIS C A, et al. The impact of Typhoon Jangmi (2008) on the midlatitude flow, Part Ⅰ: Upper-level ridgebuilding and modification of the jet[J]. Q J Roy Meteor Soc, 2013, 139(677): 2 148-2 164. [24] RIEMER M, JONES S C. The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition[J]. Q J Roy Meteor Soc, 2010, 136(648): 617-637. [25] RIEMER M, JONES S C. Interaction of a tropical cyclone with a high-amplitude, midlatitude wave pattern: Waviness analysis, trough deformation and track bifurcation[J]. Q J Roy Meteor Soc, 2014, 140(681): 1 362-1 376. [26] SCHECK L, JONES S C, JUCKES M. The resonant interaction of a tropical cyclone and a tropopause front in a barotropic model, Part Ⅰ: Zonally oriented front[J]. Atmos Sci, 2011, 68(3): 405-419. [27] SCHECK L, JONES S C, JUCKES M. The resonant interaction of a tropical cyclone and a tropopause front in a barotropic model, Part Ⅱ: Frontal waves[J]. J Atmos Sci, 2011, 68(3): 420-429. [28] TORN R D. Diagnosis of the downstream ridging associated with extratropical transition using short-term ensemble forecasts[J]. J Atmos Sci, 2010, 67(3): 817-833. [29] ATALLAH E H, BOSART L F. The extratropical transition and precipitation distribution of hurricane Floyd(1999)[J]. Mon Wea Rev, 2003, 131(6): 1 063 1 081. [30] GRAMS C M, WERNLI H, B?TTCHE M, et al. The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study[J]. Q J Roy Meteor Soc, 2011, 137(661): 2 174-2 193. [31] ARCHAMBAULT H M, BOSART L F, KEYSER D, et al. A climatological analysis of the extratropical flow response to recurving Western North Pacific tropical cyclones[J]. Mon Wea Rev, 2013, 141(7): 2 325-2 346. [32] QUINTING J F, BELL M M, HARR P A, et al. Structural characteristics of T-PARC Typhoon Sinlaku during its extratropical transition[J]. Mon Wea Rev, 2013, 142(5): 1 945-1 961. [33] CHEN H, PAN W P. Denial experiments of targeted observations for extra-tropical transition of hurricane Fabian: Signal propagation, the interaction between Fabian and mid-latitude flow, and observation strategy[J]. Mon Wea Rev, 2010, 138(8): 3 324-3 342. [34] HANLEY D, MOLINARI J, KEYSER D. A composite study of the interaction between tropical cyclones and upper-tropospheric troughs[J]. Mon Wea Rev, 2001, 129(10): 2 570-2 584. [35] WU C C, CHEN S G, CHEN J H, et al. Interaction of Typhoon Shanshan(2006) with the midlatitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives[J]. Mon Wea Rev, 2009, 137(3): 852-862. [36] RÖBCKE M, JONES S C, MAJEWSKI D. The extratropical transition of Hurricane Erin(2001): A potential vorticity perspective[J]. Meteor Z, 2004, 13(6): 511-525. [37] RITCHIE E A, ELSBERRY R L. Simulations of the transformation stage of the Ex-tratropical transition of tropical cyclones[J]. Mon Wea Rev, 2001, 129(6): 1 462-1 480. [38] RITCHIE E A, ELSBERRY R L. Simulations of the extratropical transition of tropical cyclones: Contributions by the midlatitude upper-level trough to reintensification[J]. Mon Wea Rev, 2003, 131(9): 2 112-2 118. [39] RITCHIE E A, ELSBERRY R L. Simulations of the extratropical transition of tropical cyclones: Phasing between the Upper-Level trough and tropical cyclones[J]. Mon Wea Rev, 2007, 135(3): 862-876. [40] KELLER J H, JONES S C, HARR P A. An eddy kinetic energy view of physical and dynamical processes in distinct forecast scenarios for the extratropical transition of two tropical cyclones[J]. Mon Wea Rev, 2014, 142(8): 2 751-2 771. [41] ORLANSKI I, KATZFEY J. The life cycle of a cyclone wave in the Southern Hemisphere, Part Ⅰ: Eddy energy budget[J]. J Atmos Sci, 1991, 48(17): 1 972-1 998. [42] ORLANSKI I, CHANG E K M. Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves[J]. J Atmos Sci, 1993, 50(): 212-225. [43] ORLANSKI I, SHELDON J P. A case of downstream baroclinic development over Western North America[J]. Mon Wea Rev, 1993, 121(11): 2 929-2 950. [44] CHANG E K M, ORLANSKI I. On the dynamics of a storm track[J]. J Atmos Sci, 1993, 50(7): 999-1 015. [45] DANIELSON R E, GYAKUM J R, STRAUB D. A case study of downstream baroclinic development over the North Pacific Ocean, Part Ⅰ: Dynamical impacts[J]. Mon Wea Rev, 2006, 134(5): 1 534-1 548. [46] DANIELSON R E, GYAKUM J R, STRAUB D. A case study of downstream baroclinic development over the North Pacific Ocean, Part Ⅱ: Diagnoses of eddy energy and wave activity[J]. Mon Wea Rev, 2006, 134(5): 1 549-1 567. [47] CHEN H. Downstream development of baroclinic waves in the midlatitude jet induced by extratropical transition: A case study[J]. Adv Atmos Sci, 2015, 32(4): 528-540. [48] 陈华, 霍也.台风变性过程中下游环流发展的个例对比研究[J].地球科学进展, 2016, 31(4): 409-421. [49] RIEMER M, BAUMGART M, EIERMANN S. Cyclogenesis downstream of extratropical transition analyzed by Q-vector partitioning based on flow geometry[J]. J Atmos Sci, 2014, 71(11): 4 204-4 220. [50] JUSEM J C, ATLAS R. Diagnostic evaluation of vertical motion forcing mechanisms by using Q-vector partitioning[J]. Mon Wea Rev, 1998, 126(8): 2 166-2 184. [51] 陈华, 王凯.台风与中纬度槽的相互作用对其转向之后的路径的影响[J].热带气象学报, 2015, 31(2): 145-152. [52] 王凯, 张雪婷, 陈华, 等.热带气旋的温带变性过程对中纬度下游环流的影响[J].气象科学, 2014, 34(2): 179-186. [53] CHEN H, WANG K, WANG J M, et al. A case study on sensitivity of downstream development to typhoon intensity and its initial location[J]. Meteorolog Applic, 2017, In Press. [54] GRAMS C M, JONES S C, DAVIS C A. The impact of Typhoon Jangmi(2008) on the midlatitude flow, Part Ⅱ: Downstream evolution[J]. Q J Roy Meteor Soc, 2013, 139(677): 2 165-2 180. [55] PANTILLON F, CHABOUREAU J P, LAC C, et al. On the role of a Rossby wave train during the extratropical transition of hurricane Helene (2006)[J]. Q J Roy Meteor Soc, 2013, 139(671): 370-386. [56] DAVIDSON N E, WEBER H C. The BMRC high-resolution tropical cyclone prediction system: TC-LAPS[J]. Mon Wea Rev, 2000, 128(5): 1 245-1 265. [57] WEBER H C. Hurricane track prediction with a new barotropic model[J]. Mon Wea Rev, 2001, 129(8): 1 834-1 858. [58] JÄRVINEN H, ANDERSSON E, BOUTTIER F. Variational assimilation of time sequences of surface observations with serially correlated errors[J]. Tellus, 1999, 51A(4): 469-488. [59] DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. J Atmos Sci, 1996, 53(14): 2 076-2 087. [60] KURIHARA Y, BENDER M R, ROSS R J. An initialization scheme of hurricane models by vortex specification[J]. Mon Wea Rev, 1993, 121(7): 2 030-2 045. [61] LANGLAND R H, TOTH Z, GELARO R, et al. The North Pacific Experiment (NORPEX-98): Targeted observations for improved North American weather forecasts[J]. Bull Amer Meteor Soc, 1999, 80(7): 1 363-1 384. [62] SZUNYOGH I Z, TOTH Z, MORSS R E, et al. The effects of targeted dropsonde observations during the 1999 winter storm reconnaissance program[J]. Mon Wea Rev, 2000, 128(10): 3 520-3 537. [63] MORSS R E, EMANUEL K A. Influence of added observations on analysis and forecast errors: Results from idealized systems[J]. Q J Roy Meteor Soc, 2002, 128(579): 285-321. [64] BUIZZA R, MONTANI A. Targeting observations using singular vectors[J]. J Atmos Sci, 1999, 56(17): 2 965-2 985. [65] KELLY G, THéPAUT J N, BUIZZA R, et al. The value of observations, Ⅰ: Data denial experiments for the Atlantic and the Pacific[J]. Q J R Meteorol Soc, 2007, 133(628): 1 803-1 815. [66] BUIZZA R, CARDINALI C, KELLY G, et al. The value of observations, Ⅱ: The value of observations located in singular-vector-based target areas[J]. Q J R Meteorol Soc, 2007, 133(628): 1 817-1 832. [67] CARDINALI C, BUIZZA R, KELLY G, et al. The value of observations, Ⅲ: Influence of weather regimes on targeting[J]. Q J R Meteorol Soc, 2007, 133(628): 1 833-1 842. [68] SZUNYOGH I, TOTH Z, EMANUEL K A, et al. Ensemble-based targeting experiments during FASTEX: The effect of dropsonde data from the Lear jet[J]. Q J Roy Meteor Soc, 1999, 125(561): 3 189-3 217. [69] ANWENDER D, HARR P A, JONES S C. Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies[J]. Mon Wea Rev, 2008, 136(9): 3 205-3 225.