IMPROVEMENT TO THE AIR-SEA MOMENTUM FLUX ALGORITHM
-
摘要: COARE(Coupled Ocean-Atmosphere Response Experiment)算法是国际上较先进的计算海气界面通量的算法。最新的COARE 3.0算法包含TY01方案和O02方案两种考虑真实海浪状态的海面空气动力学粗糙度方案;当有效波高和谱峰周期缺省时,利用Taylor01风浪特征量参数化方案可对它们进行参数化。在此基础上引入自主设计的WHP(Wind-wave significant wave Height and dominant wave Period)风浪特征量参数化方案和三种海面空气动力学粗糙度方案,即SCOR方案、GW03方案、PYP07方案以及更简单的Andreas12、Vickers15摩擦速度算法,利用NDBC(National Data Buoy Center)浮标数据、解放军理工大学风浪流水槽实验数据,针对中高风速条件(10 m/s≤U10≤25 m/s)比较上述方案对摩擦速度的预测效果。结果表明:WHP方案在COARE 3.0算法中的应用效果优于Taylor01方案,且新引入的SCOR、GW03、PYP07海面粗糙度方案对风浪特征量的观测误差敏感性更小、稳定度更高;水槽实测数据的对比结果表明,WHP方案结合SCOR海面粗糙度方案计算的摩擦速度与实测值最接近;引入其他三种实测数据的检验结果表明,原始COARE 3.0算法会低估摩擦速度,而WHP方案结合SCOR海面粗糙度方案能更准确地预测摩擦速度随10 m风速的增长趋势。
-
关键词:
- 有效波高 /
- 谱峰周期 /
- COARE 3.0算法 /
- 动量通量 /
- 摩擦速度
Abstract: The Coupled Ocean-Atmosphere Response Experiment (COARE) algorithm is the more advanced algorithm in the world for the air-sea flux. The newest COARE 3.0 algorithm includes two sea surface aerodynamic roughness schemes with consideration of specified wave properties named TY01 and O02. When lacking significant wave height and dominant wave period, the COARE 3.0 algorithm will use Taylor01 scheme to parameterize them. In this paper, we introduce our new developed Wind-wave significant wave Height and dominant wave Period (WHP) parameterization scheme and three sea surface aerodynamic roughness schemes named SCOR, GW03 and PYP07, in addition, two simple friction velocity algorithms named Andreas 12 and Vickers 15 are introduced. Using buoy data and the sink data, we compare above schemes for the moderate to high wind speeds. Results show that: the application of WHP scheme in COARE 3.0 algorithm is better than Taylor01 scheme, three new introduced sea surface aerodynamic roughness schemes named SCOR, GW03, PYP07 have smaller error and higher stability; the calculated friction velocity by WHP scheme combined with SCOR sea surface roughness scheme is the most close to the measured sink values; the test results used the additional introduction of the other three kinds of measured data show that the original COARE 3.0 algorithm will underestimate friction velocity, while the WHP scheme combined with SCOR sea surface roughness scheme can more accurately predict the growth trend of friction velocity over 10m wind speed.-
Key words:
- significant wave height /
- dominant wave period /
- COARE 3.0 algorithm /
- momentum flux /
- friction velocity
-
表 1 5种海面空气动力学粗糙度方案和2种摩擦速度算法
方案名称 公式 TY01 ${z_0} = 1\; 200{H_s}{\left({{H_s}/{L_p}} \right)^{4.5}} + 0.11\nu /{u_*}$ O02 ${z_0} = 25{L_p}{\left({{u_*}/{C_p}} \right)^{4.5}}/\pi + 0.11\nu /{u_*}$ SCOR ${z_0} = \beta u_*^2/g + 0.11\nu /{u_*}$ ,其中, $\beta = \left\{ {\begin{array}{*{20}{l}} {0.03\left({{C_p}/{u_*}} \right)\exp \left({ -0.14{C_p}/{u_*}} \right)} & {\left({0.35 < {C_p}/{u_*} < 35} \right)}\\ {\; \; \; \; 0.008} & {\left({{C_p}/{u_*} \ge 35} \right)} \end{array}} \right.$ GW03 ${z_0} = 10\exp \left[ { -k{{\left({B/2\pi {a_1}} \right)}^{1/2}}{{\left({{C_p}/{u_*}} \right)}^{1/4}}} \right] + 0.11\nu /{u_*}$ $\left({k = 0.4, 2\pi {a_1}, B = 7.2 \times {{10}^{ -3}}} \right)$ PYP07 $\ln \left({{z_0}/{H_s}} \right) = 2.82\ln \left({{u_*}/{C_p}} \right) -0.295$ Andreas12 ${u_*} = 0.0583\; {U_{10n}} -0.243$ Vickers15 ${u_*} = f\left(U \right)h\left({{R_b}} \right)\; \; \left({f\left(U \right) = 0.17 -0.019U + 0.0042{U^2} -8.4 \times {{10}^{ -5}}{U^3}, {R_b} = \frac{{\left({{\theta _v} -{\theta _s}} \right){\rm{gz}}}}{{{\theta _v}{U^2}}}, h\left({{R_b}} \right) = \left\{ \begin{array}{l} {\left({1 -60{R_b}} \right)^{0.1}}, {R_b} < 0\\ {\left({1 + 60{R_b}} \right)^{0.2}}, {R_b} > 0 \end{array} \right.} \right)$ 表 2 WHP和Taylor01风浪特征量参数化方案结合5种不同海面粗糙度方案计算摩擦速度u*的归一化标准误差
NSEE WHP Taylor01 TY01 0.130 1 0.159 7 O02 0.119 1 0.167 7 SCOR 0.075 8 0.115 0 GW03 0.076 5 0.105 2 PYP07 0.060 7 0.084 1 表 3 12种方案计算摩擦速度u*的归一化标准误差
方案 海面粗糙度方案 风浪特征量参数化方案WHP 风浪特征量参数化方案Taylor01 TY01 0.318 8 0.365 3 O02 0.333 7 0.374 0 COARE 3.0 SCOR 0.307 1 0.343 2 GW03 0.398 9 0.430 8 PYP07 0.376 4 0.402 2 Andreas12 0.359 4 Vickers15 0.434 4 -
[1] FRENCH J R, NNAN W M, ZHANG J A, et al. Turbulent Fluxes in the Hurricane Boundary Layer, Part Ⅰ: Momentum Flux[J]. J Atmos Sci, 2007, 64(4): 1089-1102. [2] 丁赟. 风浪状态对海面风应力的影响[D]. 青岛: 中国海洋大学, 2005. [3] FAIRALL C W, BRADLEY E F, ROGERS D P, et al. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment[J]. J Geophys Res Atmos, 1996, 101(C2): 3747-3764. [4] FAIRALL C W, BRADLEY E F, HARE J E, et al. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm[J]. J Clim, 2003, 16(4): 571-591. [5] TAYLOR P K, YELLAND M J. The Dependence of Sea Surface Roughness on the height and steepness of the waves[J]. J Phys Oceanogr, 2001, 31(2): 572-590. [6] OOST W A, KOMEN G J, JACOBS C M J, et al. New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE[J]. Bound-Layer Meteor, 2002, 103(3): 409-438. [7] ANDREAS E L, WANG S. Predicting significant wave height off the northeast coast of the United States[J]. Ocean Eng, 2007, 34(S8-9): 1328-1335. [8] TOBA Y. Local balance in the air-sea boundary processes, Ⅰ: On the growth process of wind waves[J]. J Oceanogr, 1972, 28(28): 109-121. [9] 潘玉萍, 沙文钰, 王巨华, 等.发展新型的海面空气动力学粗糙度参数化方案[J].自然科学进展, 2007, 17(8): 1069-1077. [10] WANG C D, FE I J F, DING J L, et al. Development of a new significant wave height and dominant wave period parameterization scheme[J]. Ocean Eng, 2017, 135: 170-182 [11] JONESIAN S F, TOBA Y. Wind stress over the ocean[M]. Cambridge: Cambridge University Press, 2001. [12] 沙文钰, 潘玉萍.用COARE算法测试4种最新海面空气动力粗糙度方案[J].自然科学进展, 2004, 14(2): 196-200. [13] ANDREAS E L, MAHRT L, VICKERS D. A new drag relation for aerodynamically rough flow over the ocean[J]. J Atmos Sci, 2012, 69(8): 2520-2537. [14] VICKERS D, MAHRT L, ANDREAS E L. Formulation of the sea surface friction velocity in terms of the mean wind and bulk stability[J]. J Appl Meteor Climatol, 2015, 54(3): 691-703. [15] BANNER M L, CHEN W, WALSH E J, et al. The Southern Ocean Waves Experiment, Part Ⅰ: Overview and Mean Results[J]. J Phys Oceanogr, 1999, 29(9): 2130-2145. [16] ROMERO L, MELVILLE W K. Airborne observations of fetch-limited waves in the gulf of tehuantepec[J]. J Phys Oceanogr, 2010, 40(3): 441-465. [17] EBUCHI N, KAWAMURA H. Validation of wind speeds and significant wave heights observed by the TOPEX altimeter around Japan[J]. J Oceanogr, 1994, 50(4): 479-487. [18] 李水清, 赵栋梁.风浪和涌浪分离方法的比较.海洋学报:中文版, 2012, 34(2): 23-29. [19] LIU W T, KATSAROS K B, BUSINGER J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the Interface[J]. J Atmos Sci, 1979, 36(9): 1722-1735. [20] BRUNKE M A, FAIRALL C W, ZENG X B, et al. Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes?[J]. J Clim, 2003, 16(4): 619-635. [21] 潘玉萍, 闵锦忠, 沙文钰. COARE算法中3种海面空气动力粗糙度方案的比较[J].海洋学报, 2005, 27(3): 163-169.