THE CHARACTERISTICS AND NUMERICAL SIMULATION OF DIURNAL VARIATIONS OF LOW-LEVEL JET AND MEIYU FRONT HEAVY RAINFALL
-
摘要: 利用地面加密自动站逐小时观测资料和ERA-Interim再分析资料,分析了2011年6月江淮流域的5次强降水过程和西南低空急流的日变化特征。发现强降水的日变化与西南低空急流的日变化一致:02—08时增强,14时减弱。这主要是由于夜间边界层内的惯性振荡,导致西南低空急流增强从而使得梅雨锋水汽通量辐合增强,降水增强;而白天由于边界层混合摩擦力增大,致使西南低空急流减弱或消失,降水减弱。WRF数值模拟试验不仅重现了观测的日变化特征,而且证实了江淮暴雨和西南低空急流的日变化主要是由非地转风的日变化造成:白天边界层混合强,风为次地转;而夜间边界层混合消失,气压梯度力和科氏力平衡的惯性振荡使得风为超地转Abstract: This study investigates the characteristics of diurnal variations of southwesterly low-level jet (LLJ) and five heavy rainfall events over Yangtze-Huaihe River basin during June 2011 by analyzing the ERA-interim reanalysis data and surface automatic weather stations data. It is found that the southwesterly LLJ and the precipitation have the same evident diurnal variations in the five processes, which is strong in nocturnal-to-early morning hours (0200—0800 BST) and weak in the afternoon (1400 BST) hours. It is mainly attributed to inertial oscillation at nighttime and vertical mixing in the boundary layer during daytime. The enhancement of the southwesterly LLJ leads to the enhancement of the Meiyu front water vapor convergence, which contributes to the enhancement of rainfall at nighttime. Then with the reduction or disappearance of the southwesterly LLJ, the rainfall also weakens. The WRF numerical simulation successfully reproduces the observed evolution of precipitation and the southwesterly LLJ, and it is proved that the diurnal variations of the LLJ and rainfall are mainly attributed to the diurnal variations of ageostrophic winds. With the enhancement of the vertical mixing in the boundary layer during daytime, the winds become subgeostrophic. With the disappearance of the vertical mixing at nighttime, inertial oscillation under the balance of the pressure gradient force and Carioles force turn the winds into supergeotrophic winds
-
图 4 图 3中黑色长方形框内(水平风速≥12 m/s)的前12小时(前一天20时,灰实线)、前6小时(02时,灰虚线)、当前时刻(08时,黑实线)及后6小时(14时,黑虚线)的区域平均水平风速垂直廓线
图 5 同图 4,但为850 hPa区域平均的实际风(黑实线)与地转风(灰实线)的日变化单位:m/s。
图 6 同图 3,但为850 hPa的水汽通量散度(阴影,单位:g/(s·cm2·hPa))和等风速线(红色,单位:m/s)、风向量(长杆代表 5 m/s)
-
[1] 丁一汇. 1991年江淮流域持续性特大暴雨研究[M].气象出版社, 1993. [2] 陶诗言, 张庆云, 张顺利. 1998年长江流域洪涝灾害的气候背景和大尺度环流条件[J].气候与环境研究, 1998, 4(1): 3-12. [3] 肖子牛, 叶殿秀, 王凌, 等.中国气象灾害年鉴[M].气象出版社, 2008. [4] 涂长望.中国之气团[J].气象杂志, 1938, 4(5): 175-218. [5] 陶诗言, 赵煜佳, 陈晓敏. 中国的梅雨[C]//中国气象局气象论文集. 北京: 气象出版社, 1958, 4: 36 [6] 赵思雄, 贝耐芳, 孙建华, 等.亚澳中低纬度区域暴雨天气系统研究[J].气候与环境研究, 2002, 7(4): 377-385. [7] 贝耐芳, 赵思雄. 1998年"二度梅"期间突发强暴雨系统的中尺度分析[J].大气科学, 2002, 26(4): 526-540. [8] 刘鸿波, 何明洋, 王斌, 等. Advances in low-level jet research and future prospects[J]. J Meteorolog Res, 2014, 28(1): 57-74. [9] ARRITT R W, RINK T D, SEGAL M, et al. The Great Plains low-level jet during the warm season of 1993[J]. Mon Wea Rev, 1997, 125(9): 2176-2192. [10] HIGGINS R W, YAO Y, YAROSH E S, et al. Influence of the Great Plains Low-level jet on summertime precipitation and moisture transport over the Central United States[J]. J Clim, 1997, 10(3): 481-507. [11] 孙淑清, 翟国庆.低空急流的不稳定性及其对暴雨的触发作用[J].大气科学, 1980, 4(4): 327-337. [12] 陈静, 李川, 谌贵询.低空急流在四川9.18大暴雨中的触发作用[J].气象, 2004, 28(8): 24-29. [13] 徐娟, 陈勇明.浙北梅雨季低空急流特征及其与暴雨的关系[J].气象科技, 2013, 41(2): 314-319. [14] HOECKER Jr W H. Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961[J]. Mon Wea Rev, 1963, 91(10):573-582. [15] PHAM N T, NAKAMURA K, FURUZAWA F A, et al. Characteristics of low level jets over Okinawa in the Baiu and post-Baiu seasons revealed by wind profiler observations[J]. J Meteorolog Soc Japan, 2008, 86(5): 699-717. [16] MATSUMOTO S. Characteristic features of 'Baiu' front associated with heavy rainfall[J]. J Meteorolog Soc Japan, 1971, 49: 267-281. [17] CHEN YL, LI J. Large-scale conditions favorable for the development of heavy rainfall during TAMEX IOP 3[J]. Mon Wea Rev, 1995, 123(10): 2978-3002. [18] 吴海英, 曾明剑, 尹东屏, 等.一次苏皖特大暴雨过程中边界层急流结构演变特征和作用分析[J].高原气象, 2010, 29(6): 1431-1440. [19] YU R, XU Y, ZHOU T, et al. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophys Res Lett, 2007, 34(13): 173-180. [20] ZHOU T, YU R, CHEN H, et al. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations[J]. J Clim, 2008, 21(16): 3997-4010. [21] YUAN W, YU R, CHEN H, et al. Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China[J]. J Clim, 2010, 23(24): 6684-6695. [22] YUAN W, YU R, ZHANG M, et al. Regimes of diurnal variation of summer rainfall over subtropical East Asia[J]. J Clim, 2012, 25(9): 3307-3320. [23] CHEN H, YU R, LI J, et al. Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River Valley[J]. J Clim, 2010, 23(4): 905-917. [24] 郝为锋, 苏晓冰, 王庆安, 等.山地边界层急流的观测特性及其成因分析[J].气象学报, 2001, 59(1): 120-128. [25] 翟国庆.边界层急流及与逆温层的关系[J].杭州大学学报, 1990, 17(2): 229-236. [26] 孙继松.北京地区夏季边界层急流的基本特征及形成机理研究[J].大气科学, 2005, 29(3): 445-452. [27] 王东阡, 张耀存.中国东部西南低空急流日变化特征及其机制[J].地球物理学报, 2012, 55(8): 2498-2507. [28] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3[R]. Available From NCAR; P. O. Box 3000; Boulder, CO, 2005, 88: 7-25. [29] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance ofthe data assimilation system[J]. Q J Roy MeteorologSoc, 2011, 137(656): 553-597. [30] BONNERWD. Climatology of the low level jet[J]. Mon Wea Rev, 1968, 96(12): 833-850. [31] ZHANG QH, LAU K H, KUO Y H, et al. A numerical study of a mesoscaleconvective system over the Taiwan Strait[J]. Mon Wea Rev, 2010, 131(6): 1150-1170. [32] BLACKADARAK. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bull Amer Meteorolog Soc, 1957, 38(5): 283-290. [33] KAIN J S. The Kain-Fritsch convective parameterization: An update[J]. J Appl Meteor, 2004, 43(1): 170-181. [34] MORRISON H, THOMPSON G, TATARSKII V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a imulated squall line: Comparison of one-and two-moment schemes[J]. Mon Wea Rev, 2009, 137(3): 991-1007. [35] MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for longwave[J]. J Geophys Res Atmos, 1997, 102(14):16663-16682. [36] DUDHIA J. Numerical study of convection observed during the Winter Monson Experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1989, 46(20): 3077-3107. [37] JANJIC Z I. The step-mountain ETA coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Mon Wea Rev, 1994, 122(5): 927-945. [38] TEWARI M, CHEN F, WANG W, et al. Implementation and verification of the unified NOAH landsurface model in WRF model[C]//Conference on Weather Analysis and Forecasting. 2004: 11-15.