ANALYSIS ON ATMOSPHERIC BOUNDARY LAYER STRUCTURE AND ITS EFFECT ON POLLUTION CONCENTRATION OVER DONGSHAN, SUZHOU IN WINTER
-
摘要: 利用2015年1月15—27日在苏州东山气象观测站系留气艇观测数据以及细颗粒物浓度观测资料,对东山大气边界层结构特征及其对污染物垂直结构分布的影响进行分析研究。结果表明:苏州东山地区冬季空气污染过程的边界层结构演变比较典型,夜间稳定边界层高度约为200 m,白天最大边界层高度可达1 000 m。边界层内污染物垂直结构分布易受边界层高度的影响,较低的大气边界层高度可使细颗粒物在近地层持续累积;反之,边界层高度较高,湍流发展旺盛,颗粒物垂直分布均匀。夜间大气边界层稳定,逆温结构多发,导致近地面出现细颗粒物堆积。风的垂直结构对细颗粒物空间分布也存在显著影响,在风速较小的低空层细颗粒分布较多,而风速较大的中高层的分布较少。Abstract: During January 15—27, 2015, a sounding experiment in atmospheric boundary layer over Dongshan, Suzhou was performed. Structural characteristics of atmospheric boundary layer conditions and the impacts brought by boundary layer structure on the vertical distribution of pollutants in Dongshan were studied. The results show that the evolution of boundary layer structure over Dongshan in the process of air pollution is typical. Stable boundary layer height was 200 meters at night, and the maximum boundary layer height during the day was 1 000 meters. Pollutant concentration in the boundary layer was easily affected by its height, and low boundary layer height made fine particulates accumulate in the surface layer; on the contrary, when the boundary layer height was high, turbulence developed vigorously, and fine particulates were distributed evenly in the vertical direction. In addition, due to the stable boundary layer with inversion structure at night, pollutants were prone to gather near the ground. The vertical structure of the wind distribution also had a significant effect on the spatial distribution of fine particulates. The distribution of fine particles is more in the low-velocity layer with smaller wind speed but less in the middle and high layers with larger wind speed.
-
Key words:
- boundary layer structure /
- fine particulate /
- vertical structure /
- inversion /
- wind speed
-
表 1 2015年1月15—27日长三角地区5个加密观测站点所用的观测仪器
仪器种类 测量变量 采集速率 观测站点 苏州环境
监测站南京邮电
大学苏州
东山南京信息
工程大学临安 XLS-Ⅱ型系留气艇探空系统 气压、气温、湿度、风速、风向 1组/s √ √ √ √ √ CEM DT-9881M颗粒物粒子计数空气质量检测仪 PM2.5、PM10质量浓度 1组/18 s √ √ √ √ √ BAM-1020粒子监测仪 PM2.5、PM10 1 h √ √ √ √ √ 三维超声风速风向仪 风速、风向 10 Hz √ √ √ √ √ 开路式红外水汽/
二氧化碳分析仪CO2、H2O 10 Hz √ √ √ √ √ KC-1000大流量
TSP采样器PM2.5、PM10质量浓度 3 h/次 √ √ √ √ √ 激光雷达 消光系数退偏振度 1 min/次 √ √ -
[1] 李子华, 杨军, 石春娥.地区性浓雾物理[M].北京:气象出版社. 2008: 160. [2] 张小曳.中国大气气溶胶及其气候效应的研究[J].地球科学进展, 2007, 22(1): 12-16. [3] ZHAO X J, ZHAO P S, XU J, et al. Analysis of a winter regional haze event and its formation mechanism in the North China Plain[J]. Atmos Chem Phys, 2013, 13(11): 5685-5696. [4] 王跃, 王莉莉, 赵广娜, 等.北京冬季PM2.5重污染时段不同尺度环流形势及边界层结构分析[J].气候与环境研究, 2014, 19(2): 173-184. [5] 王莉莉, 王跃思, 王迎红, 等.北京夏末秋初不同天气形势对大气污染物浓度的影响[J].中国环境科学, 2010, 30(7): 924-930. [6] 任阵海, 苏福庆, 高庆先, 等.边界层内大气排放物形成重污染背景解析[J].大气科学, 2005, 29(1): 57-63. [7] 任阵海, 苏福庆, 陈朝晖, 等.夏秋季节天气系统对边界层内大气中PM10浓度分布和演变过程的影响[J].大气科学, 2008, 32(4): 741-751. [8] 孟燕军, 程丛兰.影响北京大气污染物变化的地面天气形势分析[J].气象, 2002, 28(4): 42-47. [9] 杨兆礼, 郑彬, 吴兑, 等. 2011年南海夏季风爆发期间大气污染物特征的数值模拟[J].热带气象学报, 2014, 30(1): 73-82. [10] 张强.地形和逆温层对兰州市污染物输送的影响[J].中国环境科学, 2001, 21(3): 230-234. [11] 何清, 杨兴华, 刘强, 等.乌鲁木齐冬季大气边界层温度和风廓线观测研究[J].沙漠与绿洲气象(新疆气象), 2010, 4(1): 6-11. [12] 谢付莹, 王自发, 王喜全. 2008年奥运会期间北京地区PM10污染天气形势和气象条件特征研究[J].气候与环境研究, 2010, 15(5): 584-594. [13] 张碧辉, 刘树华, 马雁军. MYJ和YSU方案对WRF边界层气象要素模拟的影响[J].地球物理学报, 2012, 55(7): 2239-2248. [14] 杨静, 武疆艳, 李霞, 等.乌鲁木齐冬季大气边界层结构特征及其对大气污染的影响[J].干旱区研究, 2011, 28(4): 717-723. [15] WU M, WU D, FAN Q, et al. Observational studies of the meteorological characteristics associated with poor air quality over the Pearl River Delta in China[J]. Atmos Chem Phys, 2013, 13(21): 10755-10766. [16] FAN S J, FAN Q, YU W, et al. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006: Measurement and model results[J]. Atmos Chem Phys, 2011, 11(13): 681-687. [17] 李启杰, 陈怡, 陈楠, 等. BAM-1020型PM_(2. 5)采样滤带上相对湿度的质量控制研究[C]//中国环境科学学会学术年会论文集. 北京: 中国环境科学学会, 2015.