STUDY ON EVALUATION AND PARAMETERIZATION OF VISIBILITY MEASURING METERS IN GUANGZHOU
-
摘要: 利用广州地面观测站(简称广州站)的两种能见度仪和人工观测的能见度资料,分析两种观测方法之间的一致性和差异性,并对广州站能见度建立参数化模型。研究结果表明,不同的能见度范围和观测时次,两者均有较好的一致性;当能见度为3 km以下及10 km以上时,两者一致率较高;在5次正点观测的器测和目测值一致率均高达90%以上。10~30 km范围内的平均相对误差较低,其余范围均高于20%。在11、14和17时的相对误差低于10%,08和20时的相对误差较高。能见度在1~10 km范围内,随着能见度的增大,器测与目测平均相对误差增大,仪器粗差率增大。另外,基于大气相对湿度、颗粒物数浓度建立广州站能见度参数化模型,能较准确模拟出能见度变化的趋势。实际检验表明,模拟值与实况误差基本小于3 km。因此,该模型可以预报广州站的能见度,为准确判断广州市能见度变化提供一定的参考依据。Abstract: To find out the difference and correlation between atmospheric visibility data from instrumental and visual observation, this article analyzes the visibility data from two kinds of visibility measuring meters and manual observations in Weather Observatory of Guangzhou. The results show that the visibility data from the two methods all have positive correlation. When the visibility is within 3km and 10~30 km, they have high consistency. On five different points of time, the concordance rates between the two methods are more than 90%. The average relative error is lower in 10~30 km and higher than 20% in other ranges. At 11:00, 14:00 and 17:00, the average relative error is lower than 10%. In 1~10 km, with the visibility increasing, the average relative error and gross error increase, while the concordance rate reduces. To forecast the visibility more accurately, a parameterization model of visibility is established based on the particle number concentration(N) and relative humidity(RH), which can simulate the change tendency of visibility generally. Actual cases verified that most of the visibility estimation error is less than 3 km.
-
Key words:
- visibility /
- data quality evaluation /
- parameterization
-
表 1 不同能见度范围的器测与目测值的相关性分析
范围/km 相关系数 平均相对误差/ % 粗差率/ % Belfort 凯迈 Belfort 凯迈 Belfort 凯迈 <1 0.971** 0.777 38.9 32.7 0.0 0.0 1~3 0.383 0.307 28.7 25.3 0.0 0.0 3~5 0.248 0.226 45.6 40.4 3.2 1.9 5~10 0.526** 0.509** 46.8 43.6 19.5 16.7 10~30 0.810** 0.831** 4.0 5.6 1.7 1.4 注:**代表在0.01水平(双侧)上显著相关,下同。 表 2 不同时次器测与目测值相关性分析
时次 相关系数 平均相对误差/ % 粗差率/ % Belfort 凯迈 Belfort 凯迈 Belfort 凯迈 08 0.834** 0.851** 16.3% 21.2 1.20 1.6 11 0.825** 0.856** 7.0% 8.2 1.80 1.2 14 0.809** 0.833** 2.3% 4.3 1.80 1.2 17 0.837** 0.865** 3.5% 6.5 0.98 1.5 20 0.706** 0.645** 20.1% 22.7 1.70 1.3 表 3 能见度与相对湿度、颗粒物数浓度相关性分析
能见度(Vis) 相对湿度(RH) 颗粒物数浓度(N) 皮尔逊相关系数 -0.94** -0.702** -
[1] 曾书儿, 王改利.能见度的观测及其仪器[J].应用气象学报, 1999, 10(2): 207-212. [2] 林文卿, 严庆孙, 李霖.气象台站能见度观测现状与质量分析[J].福建气象, 2006(4): 30-32. [3] 刘惠兰, 周静, 朱华亮, 等.自动观测与人工观测能见度的差异性分析及检验[J].安徽农业大学学报, 2014, 41(3): 485-490. [4] 王瑞, 周学东, 李崇志, 等.江苏省能见度的人工与自动观测差异分析[J].气象科学, 2015, 35(2): 183-188. [5] 邓天宏, 米鸿涛, 王国安, 等.自动气象站资料评估方法及应用[J].河南气象, 2005, 3(1): 44-46. [6] 顾黎燕, 王蓉蓉, 刘红坤.保定站人工与自动观测能见度数据对比分析[J].农业与术, 2014, 34(9): 201-202. [7] 刘宁微, 马雁军, 王扬锋, 等.辽宁中部地区大气能见度器测与目测数据的对比分析[J].环境科学研究, 2012, 25(10): 1 120-1 125. [8] 佘元标, 黄殷, 郑贵生.饶平站能见度仪器测量与人工观测对比分析[J].广东气象, 2013, 35(1): 77-80. [9] 张慧婵, 陈浏.广州新机场目测与器测能见度资料的对比分析[J].气象研究与应用, 2010, 31(S2): 23-25. [10] 顾荆奕, 袁伟红, 陈洪良, 等. 能见度自动观测和人工观测数据对比分析[C]//江苏省气象学会第七届学术交流会论文集. 南京: 江苏省气象学会, 2011: 41-42. [11] 侯忠新, 徐晓亮.能见度FD12自动观测与人工观测对比分析[J].北京农业, 2012(18): 182-183. [12] BAUMER D, VOGEL B, VERSICK S, etal. Relationship of visibility, aerosol opticalthickness and aerosol size distribution in an ageing air mass over South-West German[J]. Atmos Environ, 2008, 42(5): 989-998. [13] 程寅, 陆亦怀, 连翠华, 等.前向散射型能见度仪的研制[J].大气与环境光学学报, 2006, 1(1): 59-63. [14] 甘桂华, 张小荣. Belfort Model 6000能见度仪工作原理与使用方法[J].广东科技, 2012, 21(23): 217-218. [15] 谭浩波, 陈欢欢, 吴兑, 等. Model 6000型前向散射能见度仪性能评估及数据订正[J].热带气象学报, 2010, 26(6): 687-693. [16] 陈静, 吴兑, 刘啟汉, 等.广州地区低能见度事件变化特征分析[J].热带气象学报, 2010, 26(2): 156-164. [17] GULTEPEI, MILBRANDTJ A. Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility[J]. J Appl Meteorol Climatol, 2010, 49(1): 36-46. [18] GULTEPEI, ISAACG A. Visibility versus precipitation rate and relative humidity[C]//Preprints, 12th Cloud Physics Conf. AmerMeteorSoc, 2006: 55. [19] GULTEPEI, MILBRANDTJ A. Microphysical observations and mesoscale model simulation of awarm fog case during FRAM project[J]. Pure Appl Geophys, 2007, 164(6): 1 161-1 178. [20] ELDRIDGE R G. The relationship between visibility and liquid water content in fog[J]. J Atmos Sci, 1971, 28(7): 1 183-1 186. [21] NEIBURGERM. Visibility and liquid content in cloud[J]. J Meteor, 1953, 10(5): 401. [22] 管琴, 李青平, 黄铃光, 等.太原雾天能见度预报[J].气象与环境学报, 2013, 29(4): 47-53. [23] 孙景群.能见度与相对湿度的关系[J].气象学报, 1985, 43(2): 230-234. [24] 柯馨姝, 盛立芳, 孔君, 等.青岛大气颗粒物数浓度变化及对能见度的影响[J].环境科学, 2014, 35(1): 15-21. [25] 李学彬, 迟如利, 徐青山, 等.利用PM10和PM2. 5反演大气能见度[J].光学技术, 2008, 34(4): 608-609. [26] 傅刚, 李晓岚, 魏娜.大气能见度研究[J].中国海洋大学学报, 2009, 39(5): 855-862.