THE DIAGNOSIS OF HEAVY RAINFALL IN CHINA AND CORRELATION OF HEAVY RAINFALL WITH MULTIPLE CLIMATIC FACTORS IN CHINA FROM 1961 TO 2015
-
摘要: 气候变化背景下,频发的暴雨事件造成城市内涝、人员伤亡和财产损失,已经成为全社会广泛关注的焦点问题之一。为了诊断中国暴雨的时空变化及其与不同自然因子的关联性,采用1961—2015年中国659个降水站点数据,采用线性趋势、EOF分析等多种统计方法诊断了中国暴雨时空变化特征,结果表明,中国暴雨雨量、雨日和雨强在1961—2015年以胡焕庸线为界呈现出东南高-西北低的气候态空间分布格局;线性趋势分析表明1961—2015年中国暴雨雨量和雨日从东南沿海向西北内陆呈明显“增-减-增”的空间分布格局,且呈增长趋势的站点占主导,分别高达80.88%和79.81%;从西北内陆到东南沿海的年代剖面分析表明中国暴雨雨量和雨日随着年代推移在迅速增长;对低通滤波后的中国暴雨进行EOF分析表明中国暴雨雨量和雨日的增长东南沿海快,内陆地区慢。根据IPCC等已有研究中筛选出对中国地区有影响的28个气候因子,并将其与659个站点的暴雨进行相关分析,结果表明不同气候因子与不同区域暴雨呈现出错综复杂的相关性特征,其中与暴雨雨量呈现以正相关和负相关为主的气候因子分别为15和13个,全局相关因子包含AAO(Antarctic Oscillation)、Pacific Warmpool,而其它气候因子在七大分区中与暴雨的关联性各有突出,表现出明显的空间异质性。Abstract: In recent years many regions are pounded with heavy rainfall, causing flood, casualties, and property damage in many urban areas. Frequent extreme precipitation events under the background of global climate change has caused terrible harm to economic and social development, life security, ecosystem, etc., which has brought profound impact on sustainable development of disaster area. Heavy rainfall has become a key factor of global and regional disasters and environmental risk, and has widely cause concern among academic community and most sectors of the society. According to the existing research results that precipitation in China is greatly affected by various atmospheric, oceanic and other climatic factors. In order to diagnose the temporal and spatial variation characteristics of heavy rainfall in China and its correlation with different climatic indices, here we use daily precipitation observations of 659 meteorological stations in China from 1961 to 2015, based on the heavy rainfall threshold of daily rainfall no less than 50 mm, to calculate heavy rainfall in China. The temporal and spatial variation characteristics of heavy rainfall, including heavy rainfall amounts, heavy rainfall days and heavy rainfall intensity in China, are diagnosed by using various statistical methods such as linear trend, EOF analysis and so on. The results show that China's heavy rainfall amounts, heavy rainfall days and heavy rainfall intensity from 1961 to 2015, by taking the Hu Huanyong line as the dividing line, has shown a significant spatial distribution pattern of being high in the southeast versus low in the northwest. Linear trend analysis result shows that heavy rainfall amounts and heavy rainfall days show an obvious spatial distribution pattern of 'increasing-decreasing-increasing' from the southeast coast to the northwest inland in China. And the meteorological stations number with increasing trend is dominant, which is up to 80.88% in all the meteorological stations in heavy rainfall amounts and 79.81% in heavy rainfall days. The decadal profile analysis result shows that heavy rainfall amounts and heavy rainfall days are increasing rapidly with time from the northwest to the southeast coast in China. The EOF analysis of heavy rainfall after being low-pass filtered shows that heavy rainfall amounts and heavy rainfall days are increasing fast in southeast coastal regions but slowly in inland areas in China. According to the IPCC and other existing research, 28 climatic indices influencing heavy rainfall in China are selected. And the correlation analysis between the 659 meteorological stations and the 28 climatic factors are carried out. The results show that the correlation between different climatic indices and different region's heavy rainfall has significantly intricate features. The climatic indices with the heavy rainfall mainly showing positive and negative correlation are 15 and 13 respectively. Factors have global impact on heavy rainfall in China including AAO and Pacific Warm Pool, while other climate indices associated with heavy rainfall in the seven geographical regions in China prominent exhibit spatial heterogeneity.
-
Key words:
- climate change /
- heavy rainfall diagnosis /
- spatiotemporal patterns /
- EOF analysis /
- climate indices /
- correlation
-
表 1 与中国区域降水相关的气候因子
序号 英文缩写 指标描述 数据来源 1 WPSH ANNUAL 西太平洋副热带高压年均值 中国气象局国家气候中心 2 WPSH SA 西太平洋副热带高压6—8月夏季均值 中国气象局国家气候中心 3 EASMI 东亚夏季风指数6—8月夏季均值 中国科学院大气物理研究所 4 SCSSMI 南海夏季风指数6—9月均值 中国科学院大气物理研究所 5 SASMI 南亚夏季风指数6—9月均值 中国科学院大气物理研究所 6 ENSO DJF ENSO指数(上一年12和1,2月均值) 美国大气海洋局 7 ENSO MAM ENSO指数3—5月均值 美国大气海洋局 8 ENSO JJA ENSO指数6—8月均值 美国大气海洋局 9 ENSO SOV ENSO指数9—11月均值 美国大气海洋局 10 PDO 太平洋年代际振荡年均值 美国大气海洋局 11 Pacific Warmpool 太平洋暖池年均值 美国大气海洋局 12 NINO3.4 热带太平洋海温年均值 美国大气海洋局 13 AMO US 北大西洋年代际振荡未滑动平均年均值 美国大气海洋局 14 AMO SM 北大西洋年代际振荡滑动平均后年均值 美国大气海洋局 15 Blocking 中纬度阻断事件年平均值6—8月均值 美国大气海洋局 16 IOD MAM 印度洋偶极子指数3—5月均值 日本海洋科学技术中心 17 IOD JJA 印度洋偶极子指数6—8月均值 日本海洋科学技术中心 18 IOD SON 印度洋偶极子指数9—11月均值 日本海洋科学技术中心 19 IOD DJF 印度洋偶极子指数上一年12和1,2月均值 日本海洋科学技术中心 20 IOD ANNUAL 印度洋偶极子指数年均值 日本海洋科学技术中心 21 Tibet 1 青藏高原高压年均值 中国气象局国家气候中心 22 Tibet 2 青藏高原高压年均值 中国气象局国家气候中心 23 QBO 准两年振荡年均值 美国大气海洋局 24 NHPVII 北半球极涡强度指数年均值 中国气象局国家气候中心 25 AO 北极涛动年均值 中国科学院大气物理研究所 26 AAO 南极涛动年均值 中国科学院大气物理研究所 27 NAO 北大西洋涛动年平均值 中国科学院大气物理研究所 28 Sunspots 太阳黑子强度年均值 美国大气海洋局 表 2 中国年际暴雨变化趋势站点数统计
暴雨雨量趋势/(mm/(10 a)) 站点数(百分比) 暴雨雨日趋势/(d/(10 a)) 站点数(百分比) < -20 7(1.06%) < -0.4 5(0.76%) -20 ~ -15 5(0.76%) -0.4 ~ -0.3 3(0.46%) -15 ~ -10 8(1.21%) -0.3 ~ -0.2 5(0.76%) -10 ~ -5 10(1.52%) -0.2 ~ -0.1 15(2.28%) -5 ~ 0 96(14.57%) -0.1 ~ 0.0 105(15.93%) 0 ~ 5 259(39.30%) 0.0 ~ 0.1 289(43.85%) 5 ~ 10 65(9.86%) 0.1 ~ 0.2 81(12.29%) 10 ~ 15 42(6.37%) 0.2 ~ 0.3 47(7.13%) 15 ~ 20 34(5.16%) 0.3 ~ 0.4 33(5.01%) > 20 133(20.18%) > 0.4 76(11.53%) 表 3 中国年际暴雨和气候指数相关性的站点统计
暴雨指标 暴雨雨量 暴雨雨日 暴雨雨强 正相关 百分比/% 负相关 百分比/% 正相关 百分比/% 负相关 百分比/% 正相关 百分比/% 负相关 百分比/% AAO 556 84.37 103 15.63 546 82.85 113 17.15 556 84.37 103 15.63 AMO SM 402 61.00 257 39.00 391 59.33 268 40.67 376 57.06 283 42.94 AMO US 416 63.13 243 36.87 409 62.06 250 37.94 369 55.99 290 44.01 AO 293 44.46 366 55.54 300 45.52 359 54.48 327 49.62 332 50.38 ENSO DFJ 479 72.69 180 27.31 485 73.60 174 26.40 441 66.92 218 33.08 ENSO MAM 225 34.14 434 65.86 223 33.84 436 66.16 204 30.96 455 69.04 ENSO JJA 144 21.85 515 78.15 142 21.55 517 78.45 145 22.00 514 78.00 ENSO SON 130 19.73 529 80.27 118 17.91 541 82.09 131 19.88 528 80.12 NAO 293 44.46 366 55.54 300 45.52 359 54.48 327 49.62 332 50.38 NINO3.4 368 55.84 291 44.16 383 58.12 276 41.88 380 57.66 279 42.34 PDO 278 42.19 381 57.81 285 43.25 374 56.75 299 45.37 360 54.63 Pacific Warmpool 529 80.27 130 19.73 528 80.12 131 19.88 543 82.40 116 17.60 WPSH SA 529 80.27 130 19.73 528 80.12 131 19.88 528 80.12 131 19.88 WPSH ANNUAL 534 81.03 125 18.97 525 79.67 134 20.33 536 81.34 123 18.66 EASMI 204 30.96 455 69.04 209 31.71 450 68.29 204 30.96 455 69.04 SCSSMI 138 20.94 521 79.06 138 20.94 521 79.06 126 19.12 533 80.88 SASMI 227 34.45 432 65.55 222 33.69 437 66.31 208 31.56 451 68.44 NHPVII 255 38.69 404 61.31 263 39.91 396 60.09 298 45.22 361 54.78 Blocking 355 53.87 304 46.13 351 53.26 308 46.74 394 59.79 265 40.21 IOD ANNUAL 250 37.94 409 62.06 235 35.66 424 64.34 261 39.61 398 60.39 IOD MAM 407 61.76 252 38.24 399 60.55 260 39.45 418 63.43 241 36.57 IOD JJA 384 58.27 275 41.73 369 55.99 290 44.01 373 56.60 286 43.40 IOD SON 353 53.57 306 46.43 339 51.44 320 48.56 353 53.57 306 46.43 IOD DJF 267 40.52 392 59.48 263 39.91 396 60.09 267 40.52 392 59.48 QBO 249 37.78 410 62.22 249 37.78 410 62.22 255 38.69 404 61.31 Tibet 1 477 72.38 182 27.62 471 71.47 188 28.53 461 69.95 198 30.05 Tibet 2 488 74.05 171 25.95 480 72.84 179 27.16 488 74.05 171 25.95 Sunspots 408 61.91 251 38.09 416 63.13 243 36.87 432 65.55 227 34.45 表 4 中国七大地理分区特征[32]
分区 包含省区 面积/万平方公里 人口/万人 人口密度/(人/km2) 站点数(比例/%) 东北 辽宁、吉林、黑龙江 78.83 10 951 139 78(11.84) 华北 北京、天津、河北、山西、内蒙古 155.81 16 832 108 87(13.20) 华中 湖北、湖南、河南、江西 73.16 26 807 366 75(11.38) 华东 山东、江苏、安徽、浙江、福建、上海 63.144 35 098 556 85(12.90) 华南 广东、广西、海南 45.19 15 899 352 58(8.80) 西北 宁夏、新疆、青海、陕西、甘肃 310.82 9 662 31 148(22.46) 西南 四川、云南、贵州、西藏、重庆 235.34 19 634 83 128(19.42) 表 5 中国不同地区年际暴雨主要气候影响因子
分区 正相关为主 负相关为主 东北 AAO; AMO US; ENSO DJF; EASMI; Pacific Warmpool;
WPSH SA; WPSH ANNUALAO; NAO; Sunspots 华北 AAO; ENSO DJF; Pacific Warmpool; PDO; SASMI; Tibet1;Tibet2;NHPVII; AO; ENSO MAM; ENSO JJA; ENSO SON;
NAO; NINO3.4;Blocking;华中 AAO; ENSO DJF; Pacific Warmpool Blocking; ENSO JJA; ENSO SON; EASMI;
SCSSMI;IOD DJF;IOD JJA;IOD SON华东 AAO; Pacific Warmpool; WPSH SA; WPSH ANNUAL QBO 华南 AAO; AO;IOD DJF; NAO; PDO; Pacific Warmpool;
QBO; WPSH SA; WPSH ANNUALAMO US; NINO3.4 西北 AAO; AMO SM; AMO US; Pacific Warmpool;
WPSH SA; Tibet1;Tibet2;SunspotsENSO MAM; ENSO JJA; ENSO SON; EASMI;
PDO; QBO; SASMI; NHPVII西南 AAO; Pacific Warmpool AMO SM; AMO US; ENSO JJA -
[1] IPCC SREX. Managing the risks of extreme events and disasters to advance climate change adaptation[M]. London: Cambridge University Press, 2012. [2] IPCC AR5. Intergovernmental panel on climate change climate change 2013 fifth assessment report (AR5)[M]. Cambridge, UK: Cambridge University Press, 2013. [3] WU X, WANG Z, ZHOU X, et al. Observed changes in precipitation extremes across 11 basins in China during 1961-2013[J]. Int J Climatol, 2015, 36(6): 1382-1 390. [4] ZHANG X, WANG S, ZHANG J, et al. Temporal and spatial variability in precipitation trends in the Southeast Tibetan Plateau during 1961-2012[J]. Climate of the Past Discussions, 2015, 11(1): 447-487. [5] 陈杨瑞雪, 罗亚丽.不同边界层参数化方案和陆面过程参数化方案对一次梅雨锋暴雨显式对流模拟的影响分析[J].热带气象学报, 2016, 32(5):656-667. [6] 徐道生, 陈子通, 戴光丰, 等.不同水汽分析场对一次华南前汛期暴雨预报的影响分析[J].热带气象学报, 2016, 32(2):155-162. [7] 史培军, 孔锋, 方佳毅.中国年代际暴雨时空变化格局[J].地理科学, 2014, 34(11): 1 281-1 290. [8] 李净, 张晓. TRMM降水数据的空间降尺度方法研究[J].地理科学, 2015(9): 1 164-1 169. [9] 李红莉, 崔春光, 徐祥德, 等.风云静止卫星资料在一次暴雨云分析中的应用[J].热带气象学报, 2016, 32(1):51-62. [10] 唐亦汉, 陈晓宏.近50年珠江流域降雨多尺度时空变化特征及其影响[J].地理科学, 2015(4): 476-482. [11] 刘洁, 陈晓宏, 许振成, 等.降雨变化对东江流域径流的影响模拟分析[J].地理科学, 2015(4): 483-490. [12] 任正果, 张明军, 王圣杰, 等. 1961—2011年中国南方地区极端降水事件变化[J].地理学报, 2014, 69(5): 640-649. [13] 林爱兰, 谷德军, 郑彬, 等. 6月广东持续性暴雨过程概念模型的建立[J].热带气象学报, 2015, 31(3): 289-299. [14] WANG H. The weakening of the Asian monsoon circulation after the end of 1970's[J]. Adv Atmos Sci, 2001, 18(3): 376-386. [15] YOU Q, KANG S, AGUILAR E, et al. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003[J]. Clim Dyn, 2011, 36(11): 2 399-2 417. [16] WANG R, LI C. Spatiotemporal analysis of precipitation trends during 1961-2010 in Hubei province, central China[J]. Theor Appl Climatol, 2015, 124(1): 1-15. [17] CHEN W, CHEN C, LI L, et al. Spatiotemporal analysis of extreme hourly precipitation patterns in Hainan Island, South China[J]. Water, 2015, 7(5): 2 239-2 253. [18] YANG T, SHAO Q, HAO Z C, et al. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China[J]. J Hydrolo, 2010, 380(3): 386-405. [19] CHEN Y, ZHANG Q, XIAO M, et al. Precipitation extremes in the Yangtze River Basin, China: regional frequency and spatial-temporal patterns[J]. Theor Appl Climatol, 2014, 116(3): 447-461. [20] GAO T, XIE L. Multivariate regression analysis and statistical modeling for summer extreme precipitation over the Yangtze River Basin, China[J]. Adv Meteo, 2014, 2014(1): 1-8. [21] 吴滨, 文明章, 李玲, 等.福建省不同短历时暴雨时空分布特征[J].暴雨灾害, 2015(2): 153-159. [22] 严昇. 我国大型城市暴雨特性及雨岛效应演变规律[D]. 东华大学, 2015. [23] OLDENBORGH G J V, BURGERS G. Searching for decadal variations in ENSO precipitation teleconnections[J]. Geophys Res Lett, 2005, 32(15): 297-318. [24] CHEN G. Interdecadal variation of tropical cyclone activity in association with summer monsoon, sea surface temperature over the western North Pacific[J]. Chinese Science Bulletin, 2009, 54(8): 1 417-1 421. [25] SILVESTRI G E, VERA C S. Antarctic Oscillation signal on precipitation anomalies over southeastern South America[J]. Geophys Res Lett, 2003, 30(30): 1-4. [26] LóPEZ-MORENO J I, VICENTE-SERRANO S M, MORáN-TEJEDA E, et al. Effects of the North Atlantic Oscillation(NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century[J]. Global & Planetary Change, 2011, 77(1): 62-76. [27] ANEESH G, TEEGAVARAPU R S V. Individual and coupled influences of AMO and ENSO on regional precipitation characteristics and extremes[J]. Water Resources Research, 2014, 50(6): 4 686-4 709. [28] NOH Y, JEONG J, KIM B, et al. Systematic variation of wintertime precipitation in East Asia by MJO-induced extratropical vertical motion[J]. J Clim, 2010, 21(21): 788-801. [29] HUANG D, ZHU J, ZHANG Y, et al. Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia[J]. Q J Roy Meteor Soc, 2015, 142(694): 108-119. [30] SOUSA P M, BARRIOPEDRO D, TRIGO R M, et al. Impact of Euro-Atlantic blocking patterns in Iberia precipitation using a novel high resolution dataset[J]. Clim Dyn, 2016, 46(7): 2 573-2 591. [31] XU Z, GONG T, LI J. Decadal trend of climate in the Tibetan Plateau-regional temperature and precipitation[J]. Hydrological Processes, 2008, 22(16): 3 056-3 065. [32] 王静爱.中国地理教程[M].北京:高等教育出版社, 2007. [33] 方建, 杜鹃, 徐伟, 等.气候变化对洪水灾害影响研究进展[J].地球科学进展, 2014, 29(9): 1 085-1 093.