THE DESIGN OF HOURLY UPDATE BJ-RUC SYSTEM FOR IMPROVING CONVECTIVE PRECIPITATION FORECASTING
-
摘要: 为了提高快速更新循环系统的分析和预报水平,在BJ-RUC系统中,发展了针对1小时更新循环的分步同化方案。分步同化的方案有效解决了在现有变分同化系统中如何在分析场中加入更多的对流尺度观测信息,同时保持大尺度背景场平衡的问题。该方案是将大尺度的常规观测和小尺度、高分辨率的观测资料分步同化,从不同尺度的观测中分别提取出大尺度和对流尺度的信息。以2009年北京地区夏季的4次强降水过程为个例进行同化和预报试验。结果表明,该方案在12小时的预报时效内能有效提高降水预报。对飑线个例的详细分析结果显示,分步同化方案可以使分析场中同时保留大尺度和对流尺度的信息,从而使预报的降水位置和强度等方面都更准确,降水预报评分有明显提高。Abstract: This study shows an improved version of Beijing Rapid Updated Cycling (BJ-RUC) forecast system with hourly update frequency and its impact on quantitative precipitation forecast (QPF). The new BJ-RUC system adopted the two-step assimilation strategy with additional improvements. Synoptic and convective observations are assimilated in different steps to extract both large-scale and convective-scale information from observations. The new system was tested with four convective cases in Beijing area during summer 2009. A detailed analysis on how the new system impacts on convective-scale QPF was conducted using a squall line case in Beijing area on 23 July 2009. The improvement in the new system results in improved QPF throughout most of the 12 h forecast period. The diagnoses of the analysis fields show that the new system is able to preserve key convective-scale as well as large-scale structures that are consistent with the development of the weather system. This study provides a prototype for operational short-term prediction of the local convective weather system.
-
Key words:
- data assimilation /
- hourly rapid update cycling /
- QPF /
- 3DVAR /
- radar /
- two-step assimilation
-
图 6 2009年7月23日个例三组试验的逐小时降水预报FSS评分
说明同图 5。
图 9 同图 8,但为第6小时
表 1 2009年北京地区夏季4次天气个例简介
日期 个例简介 6月14日 局地对流过程 7月11曰 多个局地孤立对流单体 7月22日 北京北部地区产生的强对流系统 7月23日 北京西北部地区产生的尴线系统 表 2 数值试验的同化方案设置D代表NMC方法得到背景误差的默认值。
试验方案 特征长度尺度/km 方差尺寸 GTS radar & AWS GTS radar & AWS 2STEP 120 30 D 2D ISTEP_S 30 30 2D 2D ISTEP_L 120 120 D D -
[1] FRITSCH J M, RAH Jr, ADLER R, et al. Quantitative precipitation forecasting: Report of the eighth prospectus development team, U.S. Weather Research Program[J]. Bull Amer Meteor Soc, 1998, 79(2): 285-299. [2] FRITSCH J M, CARBONE R E. Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy[J]. Bull Amer Meteor Soc, 2004, 85(7): 955-965, doi:10.1175/BAMS-85-7-955. [3] SUN J, XUE M, WILSON J W, et al. Use of NWP for nowcasting convective precipitation: Recent progress and challenges[J]. Bull Amer Meteor Soc, 2014, 95(95): 409-426, doi:10.1175/BAMS-D-11-00263.1. [4] 徐道生, 张艳霞, 王刚, 等. Meso-SAS对流参数化方案的改进及其在9 km分辨率模式中的应用[J].热带气象学报, 2015, 31(5): 608-618. [5] 徐道生, 陈子通, 戴光丰, 等.对流参数化方案的改进对GRAPES模式台风预报的影响研究[J].热带气象学报, 2014, 30(2): 210-218. [6] 陈子通, 万齐林, 沈学顺, 等. GRAPES区域模式水汽平流方案的比较与改进[J].热带气象学报, 2010, 26(1):1-16. [7] SOKOL Z, ZACHAROV P. Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity[J]. Q J Roy Meteor Soc, 2012, 138(665): 1 072-1 082. [8] SUN J, TRIER S B, XIAO Q, et al. Sensitivity of 0~12-h warm-season precipitation forecasts over the Central United States to model initialization[J]. Wea Forec, 2012, 27(4): 832-855. [9] SUN J, CHEN M, WANG Y. A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project[J]. Wea Forec, 2010, 25(6): 4 236-4 248. [10] HU M, XUE M, BREWSTER K. 3DVAR and cloud analysis with WSR-88D level-ii data for the prediction of the fort worth, texas, tornadic thunderstorms, part Ⅰ: Cloud analysis and its impact[J]. Mon Wea Rev, 2006, 134(2): 675-698. [11] HU M, XUE M, GAO J, et al. 3DVAR and Cloud Analysis with WSR-88D Level-Ⅱ Data for the prediction of the fort worth, texas, tornadic thunderstorms, part Ⅱ: Impact of radial velocity analysis via 3DVAR[J]. Mon Wea Rev, 2006, 134(2): 699-721. [12] GAO J, STENSRUD D J. Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification[J]. J Atmos Sci, 2012, 69(3): 1 054-1 065. [13] LILLY D K. Numerical prediction of thunderstorms——Has its time come?[J]. Q J Roy Meteor Soc, 1990, 116(494): 779-798. [14] WILSON J W, FENG Y, CHEN M, et al. Nowcasting challenges during the Beijing olympics: Successes, failures, and implications for future nowcasting systems[J]. Wea Forec, 2010, 25(6): 1691-1714. [15] LEI T, XUE M, YU T Y. Multi-scale analysis and prediction of the 8 may 2003 Oklahoma City tornadic supercell storm assimilating radar and surface network data using EnKF[C]//13th conf on integrated observing and assimilation systems for atmosphere, oceans, and land surface. Phoenix AZ: Amer Meteor Soc, 2008: 6. 4, 1-11. [16] XIE Y, KOCH S, MCGINLEY J, et al. A space-time multiscale analysis system: A sequential variational analysis approach[J]. Mon Wea Rev, 2011, 139(4): 1 224-1 240. [17] DONG J, XUE M, DROEGEMEIER K. The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter[J]. Meteor Atmos Phys, 2011, 112(1): 41-61. [18] 连治华, 薛纪善.一种新的地面气压插值方案在计算低于模式地形的观测相当量中的研究[J].热带气象学报, 2010, 26(4):489-495. [19] TONG W, LI G, SUN J, et al. Design strategies of an hourly update 3DVAR data assimilation system for improved convective forecasting[J]. Wea Forec, 2016, 31(5): 1 673-1 695. [20] CHEN M, FAN S, ZHONG J, et al. A WRF-based rapid updating cycling forecast system of BMB and its performance during the summer and Olympic Games 2008[C]//Proc WMO Symp on nowcasting, Whistler, BC. Canada, WMO, 2009: 6. [21] SUN J, WANG H, TONG W, et al. Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting[J]. Mon Wea Rev, 2016, 144(1): 149-169. [22] PARRISH D F, DERBER J C. The national meteorological center's spectral statistical-interpolation analysis system[J]. Mon Wea Rev, 1992, 120(62): 1 747-1 763. [23] SCHWARTZ C S, KAIN J S, WEISS S J, et al. Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing[J]. Mon Wea Rev, 2009, 137(10): 3 351-3 372.