SPATIOTEMPORAL DISTRIBUTIONS OF HAZARD-INDUCING TROPICAL CYCLONES UNDER THE 1.5℃ AND 2.0℃ GLOBAL WARMING SCENARIOS IN SOUTHEAST COASTAL CHINA
-
摘要: 将造成经济损失的热带气旋定义为致灾气旋。基于气象观测站的逐日气压、风速和降水量数据确定致灾气旋阈值,结合区域气候模式COSMO-CLM(CCLM)在1961—2100年的输出资料,预估致灾气旋发生频数及其风速与降水量,分析全球升温1.5 ℃与2.0 ℃情景下,中国东南沿海地区致灾气旋时空变化特征。结果表明:(1) 1986—2015年,东南沿海地区致灾气旋发生频数共计180个,整体呈上升趋势,平均风速和降水量分别为8.7 m/s和129.8 mm,对浙江东部及广东东部沿海影响最严重。(2)全球升温1.5 ℃,2020—2039年致灾气旋频数将由基准期(1986—2005年)的111个上升至138个,增加区域主要位于广东省西南地区及福建省南部地区;平均风速和降水量分别上升15%和17%,至8.4 m/s和109.9 mm,以福建省沿海地区增加最明显。(3)全球升温2.0 ℃,2040—2059年致灾气旋频数较1986—2005年增加33%,将达148个;风速上升32%,以浙江省东部、福建和广东省接壤的沿海地区及广东省南部增幅最大;降水量上升35%,以福建与广东省接壤的沿海地区及广东省西南地区增加明显。(4)相比升温1.5 ℃,全球气温额外升高0.5 ℃,东南沿海地区致灾气旋频数及其风速与降水量将分别上升9%、17%和18%。努力将温升控制在1.5 ℃,对降低致灾气旋频率和强度增加所导致的影响具有重要意义。
-
关键词:
- 全球升温1.5℃和2.0℃ /
- 致灾气旋 /
- 时空变化 /
- CCLM模式 /
- 东南沿海地区
Abstract: Based on the data of tropical cyclones (TCs) in China for 1986—2015, TCs that caused economic losses are defined as hazard-inducing TCs. The threshold of hazard-inducing TCs in southeastern coastal China is determined through observed daily air pressure, wind speed and precipitation data from meteorological stations. Subsequently, the frequency, wind speed and precipitation of hazard-inducing TCs are predicted by the regional climate model COSMO-CLM (CCLM), and their spatiotemporal variations are analyzed under the 1.5 ℃ and 2.0 ℃ warming scenarios relative to the baseline period of 1986—2005. Research results are shown as follows: (1) The frequency of hazard-inducing TCs in southeast coastal China shows an increasing trend from 1986 to 2005. Observed average wind speed and precipitation are 8.7 m/s and 129.8 mm, respectively. The influenced areas are mainly distributed in the east of Zhejiang province and the east coast of Guangdong province. (2) Under the 1.5 ℃ warming scenario of 2020—2039, the frequency of hazard-inducing TCs will increase by 24% relative to 1986—2005, and the increase is mainly distributed in the southwest part of Guangdong and the southern part of Fujian. Meanwhile, wind speed and precipitation by TCs will increase by 15% and 17%, respectivley, which is most significant in the coastal areas of Fujian. (3) Under the 2.0 ℃ warming scenario of 2040—2059, the frequency of hazard-inducing TCs will increase by 33% relative to the reference period of 1986—2005, and wind speed will increase by 32%. Precipitation will increase by 35%, with the neighboring area of coastal Fujian and Guangdong and the southwest Guangdong having the largest growth rate. (4) With the global temperature increase from 1.5 ℃ to 2.0℃, the frequency of hazard-inducing TCs will continue to rise, and the accompanying wind speed and precipitation might also increase by 17% and 18%, respectively. The aforementioned findings revealed that the frequency, wind speed, precipitation and influential area of hazard-inducing TCs in the southeastern coast of China will increase with the rising of temperature. It is significant to control global temperature increase below 1.5 ℃ for reducing the adverse effects of hazard-inducing TCs. -
表 1 1986—2015年浙江、福建和广东省致灾气旋风速、降水与气压阈值
地区 观测值 CCLM模拟值 风速/(m/s) 降水量/mm 气压/hPa 风速/(m/s) 降水量/mm 气压/hPa 浙江省 5 60 990 5 45 990 福建省 6 60 990 7 50 990 广东省 5 65 1000 7 60 1000 -
[1] WANG Y J, WEN S S, LI X, et al. Spatio-temporal distributions of influential tropical cyclones and associated economic losses in China in 1986-2015[J]. Nat Hazards, 2016, 84(3): 2009-2030. [2] QIN D H, ZHANG J Y, SHAN C C, et al. China national assessment report on risk management and adaptation of climate extremes and disasters[M]. Beijing: Beijing Science Press, 2016: 123-124. [3] 温姗姗, 翟建青, FISCHER T, 等. 1986—2014年影响中国热带气旋的经济损失标准化及其变化特征[J].热带气象学报, 2017, 33(4): 332-338. [4] CHEN X Y, WU L G, ZHANG J Y. Increasing duration of tropical cyclones over China[J]. Geophys Res Lett, 2011, 38(2) : 195-201. [5] 尹宜舟, 肖风劲, 罗勇, 等.我国热带气旋潜在影响力指数分析[J].地理学报, 2011, 66(3): 367-375. [6] 中国气象局.中国气象灾害年鉴2016[M].北京:气象出版社, 2017. [7] IPCC. Climate change 2013: the physical science basis. IPCC working group Ⅰ contribution to AR5[M]. Cambridge, UK, New York, USA:Cambridge University Press, 2013. [8] UNFCCC. Decision 1/CP. 21[R]. The Paris Agreement. Paris: UNFCCC, 2015. [9] 卢小丹, 王黎娟, 刘国忠, 等.两个不同季节台风引发广西特大暴雨的水汽和螺旋度对比分析[J].热带气象学报, 2017, 33(3): 375-385. [10] 魏晓雯, 吴坤娣, 陈明, 等.超强台风"威马逊"近海加强与低频水汽输送的关系及前期信号[J].热带气象学报, 2017, 33(2): 267-272. [11] TORY K J, CHAND S S, MCBRIDE J L, et al. Projected changes in late-twenty-first-century tropical cyclone frequency in 13coupled climate models from phase 5 of the coupled modelIntercomparison project[J]. J Clim, 2013, 26(24): 9946-9959. [12] MENDELSOHN R, EMANUEL K, CHONABAYASHI S et al.The impact of climate change on global tropical cyclone damage[J]. Nature Clim Change, 2012, 2: 205-209. [13] LACKMNN G M. Hurricane Sandy before 1900 and after 2100[J]. Bull Am Meteorol Soc, 2015, 96(4): 547-560. [14] 张悦, 李珊珊, 陈灏, 等.广东省台风灾害风险综合评估[J].热带气象学报, 2017, 33(2): 281-288. [15] SUN J Q, AHN J B. A GCM-Based forecasting model for the landfall of tropical cyclones in China[J]. Adv Atmos Sci, 2011, 28(5): 1049-1055. [16] CAMARGO S J. Global and regional aspects of tropical cyclone activity in the CMIP5 models[J]. J Clim, 2013, 26(24): 9880-9902. [17] 李新周, 刘晓东.未来全球气候变暖情景下华东地区极端降水变化的数值模拟研究[J].热带气象学报, 2012, 28(3): 379-391. [18] 陶辉, 黄金龙, 翟建青, 等.长江流域气候变化高分辨率模拟与RCP4.5情景下的预估[J].气候变化研究进展, 2013, 9(4): 246-251. [19] 孟玉婧, 姜彤, 苏布达, 等.高分辨率区域气候模式CCLM对鄱阳湖流域气温的模拟评估[J].中国农业气象, 2013, 34(2): 123-129. [20] FISCHER T, MENZ C, SU B D, et al. Simulated and projected climate extremes in the Zhujiang River Basin, South China, using the regional climate model COSMO-CLM[J]. Int J Climatol, 2013, 33(14): 2988-3001. [21] 高超, 张正涛, 陈实, 等. RCP4.5情景下淮河流域气候变化的高分辨率模拟[J].地理研究, 2014, 33(3): 467-477. [22] 朱娴韵, 苏布达, 黄金龙, 等.云南气候变化高分辨率模拟与RCP4.5情景预估[J].长江流域资源与环境, 2015, 24(3): 476-481. [23] 黄金龙, 王艳君, 苏布达, 等. RCP 4.5情景下长江上游流域未来气候变化及其对径流的影响[J].气象, 2016, 42(5): 614-620. [24] 陈静, 刘洪滨, 王艳君, 等.华北平原干旱事件特征及农业用地暴露度演变分析[J].中国农业气象, 2016, 37(5): 587-599. [25] SU B D, JIAN D N, WANG Y J, et al. Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5 ℃ and 2.0 ℃ in the Tarim River Basin, China[J]. Atmos Res, 2017, 196: 119-128. [26] SUN H M, WANG Y J, CHEN J, et al. Exposure of population to droughts in the Haihe River Basin under global warming of 1.5 and 2.0 ℃ scenarios[J]. Quat Int, 2017, 453:74-84. [27] 王安乾, 苏布达, 王艳君, 等.全球升温1.5 ℃与2.0 ℃下中国极端低温事件特征与耕地暴露度研究[J].气象学报, 2017, 75(3): 415-428. [28] 刘俸霞, 姜彤, 赵晶, 等.全球升温1.5 ℃与2.0 ℃情景长江中下游地区极端降水的变化特征[J].长江流域资源与环境, 2017, 26(5): 778-788. [29] COLBERT A J, SODEN B J, KIRTMAN B P. The impact of natural and anthropogenic climate change on western north Pacific tropical cyclone tracks[J]. J Clim, 2015, 28 (5): 1806-1823. [30] WU L, WANG B. What has changed the proportion of intense hurricanes in the last 30 years? [J]. J Clim, 2008, 21(6): 1432-1439. [31] WU L, WANG B, BRAUN S A. Implications of tropical cyclone power dissipation index[J]. Int J Climatol, 2008, 28(6): 727-731. [32] 陆逸, 朱伟军, 任福民, 等. 1986-2014年中国台风大风和台风极端大风的变化[J].气候变化研究进展, 2016, 12(5): 413-421. [33] YING M, CHEN B D, WU G X. Climate trends in tropical cyclone-induced wind and precipitation over mainland China[J]. Geophys Res Lett, 2011, 38(1): 321-326. -