NUMERICAL SIMULATION OF THE INFLUENCE OF INITIAL WATER VAPOR ON THE TRIGGER AND MAINTENANCE OF A SEVER SPRING SQUALL LINE IN SOUTH CHINA
-
摘要: 在对观测资料分析的基础上,采用WRF模式探讨初始场水汽分布对华南2014年3月30—31日产生雷暴大风、强降水的飑线过程触发和维持的影响。研究基于ERA-interim和NCEP-FNL再分析资料在华南地区水汽分布的差异性,设计了四组将两类资料水汽按比例融合作为初始场的数值试验,水汽场从NCEP-FNL越靠近ERA-interim水汽,模拟的飑线演变越趋近实况,试验结果表明更准确的水汽初始场有利于提高飑线等强对流系统的预报准确率。在对流初生阶段,区域内水汽含量增多,最大有效位能增大,对流越容易触发;对流发展中后期,充沛的水汽有利于飑线组织形态和强度的维持。Abstract: Based on analysis of observational data, the influence of initial water vapor distribution on the triggering and maintenance of a squall line process, which occurred with strong wind and heavy rainfall over the south of China on March 30-31, 2014, is investigated by the WRF model. According to the differences between ERA-Interim and NCEP-FNL reanalysis in the south of China, four tests of numerical simulations with different initial water vapor fields were designed by merging the two reanalysis datasets in proportion. Contrast tests confirmed that when initial water vapor evolves from NCEP-FNL to ERA-interim, the simulation results tend to approach real situation more closely. Therefore, it is advantageous to improve the predictability of squall line and other strong convective systems by constructing more accurate initial water vapor field. In the initial stage of convection, the more the water vapor content in the region accompanied by greater maximum available potential energy, the easier the convection is triggered. In the later convection development, abundant water vapor is conducive to the maintenance of organization and strength of squall line.
-
Key words:
- squall line /
- water vapor /
- initial condition /
- strong wind
-
图 12 2014年3月30日12时—31日12时各组试验在飑线影响区域内(图 6b实线框)PWAT的时间演变(a,单位:mm); 12—16时各组试验对流初生区域内(105~112 °E, 23~26.5 °N)最大对流有效位能的时间演变(b,单位:J/kg)
表 1 试验方案
试验名称 试验方案 EC 初始场变量完全来自EC资料 EC-FNL 初始场水汽变量来自EC资料,其他变量来自FNL资料 FNL 初始场变量完全来自FNL资料 FNL-25 水汽变量由EC减去FNL,其差按25%比例加在FNL水汽变量中 FNL-50 水汽变量由EC减去FNL,其差按50%比例加在FNL水汽变量中 FNL-75 水汽变量由EC减去FNL,其差按75%比例加在FNL水汽变量中 表 2 不同试验方案对流系统演变阶段划分
试验方案 形成阶段 发展阶段 成熟阶段 消散阶段 EC 13—16时 17—20时 21—00时 01—05时 EC-FNL 13—16时 17—20时 21—00时 01—05时 FNL 16—19时 20—00时 01—05时 06—10时 FNL-25 15—18时 19—23时 00—04时 05—09时 FNL-50 14—17时 18—21时 22—03时 04—08时 FNL-75 14—16时 17—20时 21—02时 03—07时 -
[1] MADDOX R A. Meoscale convective complexes[J]. Bull Amer Meteor Soc, 1980, 61(11): 1374-1387. [2] BROWNING K A, LUDLAM F H. Airflow in convective storms[J]. Quart J Roy Meteor Soc, 1962, 88(376): 117-135. [3] HOUZE JR R A, BIGGERSTAFF M I, RUTLEDGE S A, et al. Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems[J]. Bull Amer Meteor Soc, 1989, 70(6): 608-619. [4] ROTUNNO R, KLEMP J B, WEISMAN M L. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 1988, 45(3): 463-485. [5] WEISMAN, MORRIS L, ROTUNNO, et al. A theory for strong long-lived squall lines revisited[J]. J Atmos Sci, 2004, 45(3): 463-485. [6] BRYAN G H, KNIEVEL J C, PARKER M D. A multimodel assessment of RKW theory's relevance to squall-line characteristics[J]. Mon Wea Rev, 2006, 134(10): 2772-2792. [7] 陈明轩, 王迎春.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报, 2012, 70(3): 371-386. [8] SMULL B F, HOUZE R A. Rear inflow in squall lines with trailing stratiform precipitation[J]. Mon Wea Rev, 1987, 115(12): 2869-2889. [9] WEISMAN M L. The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems[J]. J Atmos Sci, 1992, 49(19): 1826-1847. [10] ZHANG D L, GAO K. Numerical simulation of an intense squall line during 10-11 June 1985 PRE-STORM. Part Ⅱ: Rear inflow, surface pressure perturbations and stratiform precipitation[J]. Mon Wea Rev, 1989, 117(9): 2067-2094. [11] GRIM J A, RAUBER R M, MCFARQUHAR G M, et al. Development and forcing of the rear inflow jet in a rapidly developing and decaying squall line during BAMEX[J]. Mon Wea Rev, 2009, 137(4): 1206-1229. [12] MENG Z, ZHANG F, MARKOWSKI P, et al. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China[J]. J Atmos Sci, 2012, 69(4): 1182-1207. [13] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(10): 3413-3436. [14] GALLUS JR W A, SNOOK N A, JOHNSON E V. Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study[J]. Wea Forecasting, 2008, 23(1): 101-113. [15] ZHENG L, SUN J, ZHANG X, et al. Organizational modes of mesoscale convective systems over central East China[J]. Wea Forecasting, 2013, 28(5): 1081-1098. [16] FUJITA T T. Manual of downburst identification for project NIMROD[M]. Satellite and Mesometeorology Research Project, Department of the Geophysical Sciences, University of Chicago, 1978. [17] 丁一汇, 李鸿洲, 章名立, 等.我国飑线发生条件的研究[J].大气科学, 1982, 6(1):18-27. [18] MENG Z, YAN D, ZHANG Y. General features of squall lines in East China[J]. Mon Wea Rev, 2013, 141(5): 1629-1647. [19] 郑淋淋, 孙建华.干、湿环境下中尺度对流系统发生的环流背景和地面特征分析[J].大气科学, 2013, 37(4): 891-904. [20] 杨新林, 孙建华, 鲁蓉, 等.华南雷暴大风天气的环境条件分布特征[J].气象, 2017, 43(7):769-780. [21] 孙建华, 郑淋淋, 赵思雄.水汽含量对飑线组织结构和强度影响的数值试验[J].大气科学, 2014, 38(4): 742-755. [22] WANDISHIN M S, STENSRUD D J, MULLEN S L, et al. On the predictability of mesoscale convective systems: Two-dimensional simulations[J]. Wea Forecasting, 2008, 23(5): 773-785. [23] WANDISHIN M S, STENSRUD D J, MULLEN S L, et al. On the predictability of mesoscale convective systems: Three-dimensional simulations[J]. Mon Wea Rev, 2010, 138(5): 863-885. [24] SERREZE M C, HURST C M. Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses[J]. J Climate, 2000, 13(1): 182-201. [25] BROMWICH D H, FOGT R L. Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958-2001[J]. J Climate, 2004, 17(23): 4603-4619. [26] 赵天保, 符淙斌.应用探空观测资料评估几类再分析资料在中国区域的适用性[J].大气科学, 2009, 33(3):634-648. [27] 赵天保, 符淙斌, 柯宗建, 等.全球大气再分析资料的研究现状与进展[J].地球科学进展, 2010, 25(3):242-254. [28] BAO X, ZHANG F. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. J Climate, 2013, 26(1): 206-214. [29] LEARY C A, HOUZE JR R A. The structure and evolution of convection in a tropical cloud cluster[J]. J Atmos Sci, 1979, 36(3): 437-457. [30] 郑淋淋, 孙建华.风切变对中尺度对流系统强度和组织结构影响的数值试验[J].大气科学, 2016, 40(2): 324-340. [31] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A Description of the Advanced Research WRF Version 3[R]. NCAR Tech. Note NCAR/TN-475+STR, 2008, 113 pp. -