SIMULATION RESEARCH OF ICE CLOUD MICROPHYSICAL PARAMETERS RETRIEVAL WITH THZ-BAND RADAR MEASUREMENT
-
摘要: 在假设冰云粒子呈球形以及粒子谱服从对数正态分布的条件下,利用离散偶极子近似法(DDA),计算出太赫兹频段(220 GHz)冰云粒子的雷达反射率因子,及其与瑞利假设下雷达反射率因子的比值。忽略衰减和多次散射的影响,根据太赫兹波段冰云的雷达反射率因子,基于最优估计理论反演冰云的微物理参数,并验证该算法的可靠性。反演结果表明,当冰云粒子大小在设定的尺度范围内时,有效粒子半径(re)的反演误差小于4%,粒子谱宽(σ)的误差小于2.5%、粒子数密度(NT)的误差小于1%,冰水含量(IWC)的误差小于5%。还分析了当NT和σ为定值时,反演结果随粒子尺寸的变化情况,当冰云粒子尺寸在模拟计算设定的范围内时,re的反演误差小于0.04%,σ的反演误差小于0.02%,NT的反演误差小于0.50%,IWC的反演误差小于0.08%,如果冰云粒子大小超出模拟计算设置的范围,反演误差随着re增加而增大。该结果证明了基于最优估计理论反演得到的冰云微物理参数与模拟设定值有良好的一致性,说明该方法可应用于太赫兹频段云雷达的冰云观测及云微物理参数的反演和研究。Abstract: With the assumption that ice cloud droplets are spherical and size spectra follows lognormal distribution, the factor of radar reflectivity of the ice cloud droplets and their ratio to that with the Rayleigh assumption are determined for the frequency of THz (220 GHz) by adopting the DDA (Discrete Dipole Approximation) algorithm. Without considering the attenuation and multiple scattering effects, the characteristic parameters for ice cloud particles are retrieved using the simulated radar reflectivity factor of ice clouds. Based on the optimal estimation theory the retrieval algorithm is verified to be reliable in the THz band according to the simulated radar reflectivity factor of ice clouds. The retrieval result of a case study shows that retrieval error of effective radius(re), width parameter(σ), number concentration(NT) and ice water content(IWC) are less than 4%, 2.5%, 1% and 5%, respectively, when the ice cloud particle size distribution is in the range of simulation setting. Then the retrieval variation with ice cloud particle size is analyzed with NT and σ set as constants; when the ice cloud particle size distribution is in the range of simulation setting, retrieval error of retrieved re, σ, NT and IWC is less than 0.04%, 0.02%, 0.50% and 0.08%, respectively, otherwise the retrieval error increases with re. These results have proved that retrieved ice cloud microphysical parameters are well consistent with simulated real values, so this retrieval algorithm based on optimal estimation theory can be useful for observation and retrieval research of ice cloud microphysical parameters with THz cloud profiling radars.
-
Key words:
- THz /
- ice cloud /
- optimal estimation theory /
- cloud microphysical parameters /
- retrieval algorithm
-
表 1 太赫兹云雷达反射率因子及其粒子谱参数信息个例
个例 ZdB/dBz re/μm IWC/(g/m3) Dg/μm σ NT/m-3 Case1 -16.23 37.29 0.025 50 0.4 200 000 Case2 15.63 149.18 1.578 200 0.4 200 000 Case3 -26.23 37.29 0.002 50 0.4 20 000 Case4 5.63 149.18 0.158 200 0.4 20 000 Case5 -2.35 123.83 0.021 50 0.8 20 000 Case6 20.81 495.30 1.230 200 0.8 20 000 表 2 云粒子反演结果及误差
个例 re/μm 误差/% IWC/%C/(g/m3) 误差/% σ 误差/% NT/m-3 误差/% Case1 37.42 0.35 0.025 0 0.40 0 198 325.68 0.84 Case2 148.89 0.19 1.545 4.55 0.41 2.50 200 045.21 0.02 Case3 37.42 0.35 0.002 0 0.40 0 19 832.56 0.84 Case4 148.89 0.19 0.155 1.12 0.41 2.50 20 004.52 0.02 Case5 118.89 3.98 0.019 2.34 0.79 1.25 19 821.60 0.89 Case6 451.68 8.81 1.127 42.2 0.78 2.50 19 931.80 0.34 -
[1] HONG G. Radar backscattering properties of nonspherical ice crystals at 94 GHz[J]. J Geophys Res, 2007, 112(D22203): 1-11. [2] MACE G G, BENSON S, VERNON E. Cirrus clouds and the large-scale atmospheric state: relationships revealed by six years of ground-based data[J]. J Clim, 2006, 19(13): 3257-3278. [3] STEPHENS G L. Cloud feedbacks in the climate system: A critical review[J]. J Clim, 2005, 18(2):237-273. [4] SASSEN K, CAMPBELL J R. A midlatitude cirrus cloud climatology from the facility for Atmospheric Remote Sensing: Part Ⅰ: Macrophysical and synoptic properties[J]. J Atmos Sci, 2001, 58(58): 481-496. [5] 徐道生, 张艳霞, 张诚忠, 等.华南区域高分辨率模式中不同雷达回波反演技术方案的比较试验[J].热带气象学报, 2016, 32(1): 9-18. [6] KOLLIAS P, CLOTHIAUX E E, MILLER M A, et al. Millimeter-wavelength radar: New frontier in atmospheric cloud and precipitation research[J]. Bull Amer Meteor Soc, 2007, 88(10): 1608-1624. [7] 刘黎平, 宗蓉, 齐彦斌, 等.云雷达反演层状云微物理参数及其与飞机观测数据的对比[J].中国工程科学, 2012, 14(9):64-71. [8] SASSEN K, MACE G G, WANG Z, et al. Continental stratus clouds: A case study using coordinated remote sensing and aircraft measurements[J]. J Atmos Sci, 1999, 56(56): 2345-2358. [9] JAMES B M, ROBERT E M, DOUGLAS V, et al. Remote sensing of clouds and fog with a 1.4 mm radar[J]. J Atmos Ocean Tech, 1989, 6(6): 1090-1097. [10] JAMES B M, ROBERT E M. A 225 GHz polarimetric radar[J]. IEEE Transaction on Microwave Theory and Technics, 1990, 38(9):1252-1258. [11] HOGAN R J, ILLINGWORTH A J. The potential of spaceborne dual-wavelength radar to make global measurements of cirrus clouds[J]. J Atmos Ocean Tech, 1999, 16(5): 518-531. [12] BATTAGLIA A, WESTBROOK C D, KNEIFEL S, et al. G-band atmospheric radars new frontiers in cloud physics[J]. Atmos Meas Tech Discuss, 2014, 7(6): 321-375. [13] HONG G. Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies[J]. J Geophys Res, 2007, 112(D11208): 1-11. [14] 边明明, 王世涛, 胡伟东, 等.星载太赫兹雷达测云散射特性及辐射源分析[J].太赫兹科学与电子信息学报, 2015, 13(5):712-717. [15] LIU C L, ILLINGWORTH A J. Toward more accurate retrievals of ice water content from radar measurements of clouds[J]. J Appl Meteor, 2000, 39(7): 1130-1146. [16] HOGAN R J, DONOVAN D P, TINEL C, et al. Independent evaluation of the ability of spaceborne radar and lidar to retrieve the microphysical and radiative properties of ice clouds[J]. J Atmos Ocean Tech, 2006, 23(2): 211-227. [17] PROTAT A, HEYMSFIELD A J. Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database[J]. J Appl Meteor Climatol, 2007, 46(5):557-572. [18] 樊雅文, 黄兴友, 李锋.毫米波雷达测云个例研究[J].大气科学学报, 2013, 36(5): 554-559. [19] 王金虎, 葛俊祥, 魏鸣, 等.非球形冰晶粒子毫米波IWC-Z关系的研究[J].热带气象学报, 2016, 32(2): 246-255. [20] BENEDETTI A, STEPHENS G L, HAYNES J M. Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approach[J]. J Geophys Res, 2003, 108(D11): 4335. [21] AUSTIN R T, HEYMSFIELD A J, STEPHENS G L. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature[J]. J Geophys Res, 2009, 114(D00A23): 1-19. [22] DENG M, MACE G G, WANG Z, et al. Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar[J]. J Geophys Res, 2010, 115(D00J15): 1-18. [23] DELANOE J, HOGAN R J. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer[J]. J Geophys Res, 2008, 113(D07204): 1-21. [24] RAY P S. Broadband complex refractive indices of ice and water[J]. Applied Optics, 1972, 11(8): 1836-1844. [25] MATZLER C. Microwave dielectric properties of ice, in thermal microwave radiation: Applications for remote sensing[M]. Electromagnetic Waves Series, 2006, 52(584): 455-462 [26] DRAINE B T, FLATAU P J. Discrete-dipole approximation for scattering calculations[J]. J Opt Soc Am A, 1994, 11(11): 1491-1499. [27] MARKS C J, RODGERS C D. A retrieval method for atmospheric composition from limb emission measurements[J]. J Geophys Res, 1993, 98(D8): 14939-14953. [28] LYNCH D K. Cirrus[M]. Oxford University Press, 2001: 6. [29] SASSEN K, WANG Z, KHVOROSTYANOV V I, et al. Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphysical model[J]. J Appl Meteorol, 2002, 41(6): 620-628. -