ULTRA-HIGH RESOLUTION SIMULATION OF LOW-LEVEL UPDRAFT EXTREMES IN THE TROPICAL CYCLONE EYEWALL
-
摘要: 观测发现热带气旋(TC)眼墙附近低层(3 km以下)存在着强烈的上升运动,严重威胁低空观测飞机的安全,由于对实际TC观测的样本非常有限,目前对极端上升运动(大于10 m/s)的了解不多。通过三个水平分辨率自次千米(333 m)至次百米(37 m)大涡数值试验模拟眼墙附近低层上升运动的分布特征。结果表明,TC眼墙附近的最强上升运动主要分布在眼墙处最大风速半径(RMW)内侧,并且主要出现在台风眼墙强对流的一侧。对比不同试验发现,在大涡试验中,随着模式水平分辨率的提高,模式可以模拟出更强的上升运动,且极端上升运动最大频数的分布高度随着水平分辨率的提高而降低。研究表明,与现有观测结果比较,当大涡试验水平分辨率到达111 m时,可以模拟出与实际观测比较相似的极端上升运动空间分布和强度。Abstract: Observation shows very strong upward motion in the low-level (below 3 km) eyewall of the tropical cyclone (TC), which seriously threatens the safety of low-altitude observation aircraft. Since the TC observation is limited in the sample size, the extreme updraft (larger than 10 m/s) is not fully understood. In this study, four numerical simulations with resolutions from the sub-kilometer (1/3 km) to sub-hundred meter (1/27 km) are conducted to investigate the low-level updraft extreme near the eyewall. Results show that the strongest updrafts near the eyewall are located in the inner side of the radius of the maximum wind (RMW). Increasing the horizontal resolution in a large eddy experiment, the magnitude (frequency) of the extreme updraft increases. In addition, when the horizontal resolution of the large eddy experiment reaches 111 meter, the spatial distribution and magnititude of the extreme updraft are comparable to the observation.
-
表 1 数值试验网格设置和边界层方法
试验名称 PBL 嵌套格点(区域) 水平分辨率 LES333 LES 721×721(240km) 1/3km LES111 LES 1351×1351(150km) 1/9km LES37 LES 2431×2431(90km) 1/27km 表 2 三个试验3 km以下眼墙区域不同强度垂直运动的占总格点的比例
试验名称 W5/% W10/% W15/% W20/% LES333 1.8 7.5×10-2 5.3×10-3 2.8×10-4 LES111 2.1 0.1 8.9×10-3 9.1×10-4 LES37 1.5 5.9×10-2 3.6×10-3 4.7×10-4 表 3 三个试验3 km以下强对流区域不同强度垂直运动的占强对流区域格点的比例
试验名称 W5/% W10/% W15/% W20/% LES333 2.40 0.11 7.40×10-3 4.00×10-4 LES111 3.10 0.16 1.50×10-2 1.40×10-4 LES37 2.30 9.40×10-2 6.70×10-3 7.70×10-4 -
[1] 张娇艳, 吴立广, 张强.全球变暖背景下我国热带气旋灾害趋势分析[J].热带气象学报, 2011, 27(4):442-454. [2] ZHANG Q, LIU Q, WU L.Tropical cyclone damages in China 1983-2006[J].Amer Meteor Soc, 2009, 90:489-495. [3] JORGENSEN D P, EDWARD J Z, MARGARET A L.Vertical motions in intense hurricanes[J].J Atmos Sci, 1985, 42(8):839-856. [4] BLACK M L, ROBERT W B, FRANK D M.Vertical motion characteristics of tropical cyclones determined with airborne doppler radial velocities[J].J Atmos Sci, 1996, 53(13):1 887-1 909. [5] HOCK T F, JAMES L F.The NCAR GPS dropwindsonde[J].Bulletin of the American Meteorological Society, 1999, 80(3):407-420. [6] STERN D P, ABERSON S D.Extreme vertical winds measured by dropwindsondes in hurricanes[C].Preprints, 27th Conf.on Hurricanes and Tropical Meteorology, Monterey, CA, Amer.Meteor.Soc., 2006: 16B.8. [7] BRAUN S A, WU L.A numerical study of Hurricane Erin (2001).Part Ⅱ:Shear and the organization of eyewall vertical motion[J].Mon Wea Rev, 2007:135(4):1 179-1 194. [8] BRAUN S A, MICHAEL T M, ZHAO X P.High-Resolution simulation of Hurricane Bonnie (1998).Part Ⅰ:The organization of eyewall vertical motion[J]J Atmos Sci, 2006, 63(1):19-42. [9] STERN D P, GEORGE H B, ABERSON S D.Extreme low-level updrafts and wind speeds measured by dropsondes in tropical cyclones[J].Mon Wea Rev, 2016, 144(6):2 177-2 204. [10] NOH Y, CHEON W G, HONG S Y, et al, Improvement of the K-Profile Model for the planetary boundary layer based on large eddy simulation data[J].Boundary-Layer Meteorology, 2003, 107(2):401-427. [11] YANG Z Y.Large-Eddy simulation:past, present and the future[J].Chinese Journal of Aeronautics, 2015, 28(1):11-24. [12] ZHU P.Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies[J].J Geophy Res, 2008, 113(17):1-16. [13] ROTUNNO R, CHEN Y.WANG W, et al.Large-Eddy simulation of an idealized tropical cyclone[J].Bull Ame Meteor Soc, 2009, 90(12):1 783-1 788. [14] DUCHON C E.Lanczos filtering in one and two dimensions[J].J Appl Meteor, 1979, 18:1 016-1 022. [15] WU L, CHEN X Y.Revisiting the steering principle of tropical cyclone motion in a numerical experiment[J].Atmos Chem Phys, 2016, 16:14 925-14 936. [16] KAIN J S, FRITCH J M.Convective parameterization for mesoscale models:The Kain-Fritch scheme the representation of cumulus convection in numerical models[J].Meteor Monogr Amer Meteor Soc, 1993, 46:165-170. [17] HONG S Y, LIM J O J.The WRF single-moment 6-class microphysics scheme (WSM6)[J].J Korean Meteor Soc, 2006, 42:129-151. [18] DUDHIA J.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].J Atmos Sci, 1989, 46(20):3 077-3 107. [19] MLAWER E J, TAUBMAN S J, BROWN P D, et al.Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave[J].J Geophys Res, 1997, 102(D14):16 663-16 682. [20] NGUYEN L T, MOLINARI J, THOMAS D.Evaluation of tropical cyclone center identification methods in numerical models[J].Mon Wea Rev, 2014, 142(11):4 326-4 339. [21] ROTUNNO R, CHEN Y, WANG W, et al.Large-Eddy simulation of an idealized tropical cyclone[J].Bull Ame Meteor Soc, 2009, 90(12):1 783-1 788. [22] FRANK W M, RITCHIE E A.Effects of environmental flow upon tropical cyclone structure[J].Mon Wear Rev, 1999, 127(9):2 044-2 061. [23] ZHANG J A, ROGERS R F, REASOR P D, et al.Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear[J].Mon Wea Rev, 2013, 141(11):3 968-3 984. [24] GREEN B W, ZHANG F Q.Numerical simulations of Hurricane Katrina (2005) in the Turbulent Gray Zone[J].Journal of Advances in Modeling Earth Systems, 2015, 7(1):142-161. [25] GUIMOND S R, GERALD M H, TURK F J.Multiscale observations of Hurricane Dennis (2005):The effects of hot towers on rapid intensification[J].J Atmos Sci, 2010, 67(3):633-654. [26] ABERSON S D, MICHAEL L B, ROBERT A B, et al.Thirty years of tropical cyclone research with the Noaa P-3 Aircraft[J].Bull Ame Meteor Soc, 2006, 87(8):1 039-1 056. -