THE IMPACT OF RESOLUTION ON THE SIMULATION RESULTS OF TYPHOON HATO (2017)
-
摘要: 利用WRF模式,研究了模式水平和垂直网格分辨率对台风“天鸽”(2017)模拟的影响。结果表明:水平分辨率的改变会对台风路径造成一定的影响,这种影响与改变水平分辨率以后所引起的台风强度和结构的变化有关。使用更高的水平分辨率时模拟的台风强度往往更强。此外,改变垂直分辨率对台风的路径模拟也有一定的影响。采用双曲正切的垂直分层方法,提高垂直层数,模式大气的垂直分辨率都有增加,但是在低层和高层垂直分辨率的增加更大。低层和高层垂直分辨率增加,模拟的台风强度增强。模式的水平分辨率和垂直分辨率之间匹配才能比较好地模拟台风,双向嵌套模式在提高嵌套层数的同时也要增加模式的垂直分辨率。台风强度和结构变化密切相关,台风强度增强的重要原因是台风云墙随着分辨率的增加更加陡峭,垂直风速随着水平分辨率的提高逐渐增强。Abstract: In this article, the effect of horizontal and vertical grid resolution on typhoon Hato (2017) are studied by using WRF model. The results show that changing horizontal resolution will affect the simulation results of typhoon tracks to some extent because changing of horizontal resolution is related to the change of typhoon intensity and structure tightly, while higher horizontal resolution tends to produce stronger typhoon. In addition, changing the vertical resolution also has certain influence on the simulation of typhoon tracks. Using hyperbolic tangent to layer vertical level, increasing the number of vertical layers, vertical resolution would increase, but the increase of resolution at low level and high level is more obvious and this change tends to produce stronger typhoon. Typhoon can be simulated well only when horizontal and vertical resolution of the model match and in the two-way nesting model, the vertical resolution of the model should also be increased simultaneously with the increase of the number of nesting layers. Typhoon's intensity is closely related to its structure. One important reason for the increase of intensity of typhoon is that the inclination of typhoon cloud wall would be steeper while increasing the horizontal resolution. The intensity of the simulated vertical wind speed increases with the increase of horizontal resolution.
-
Key words:
- typhoon /
- horizontal resolution /
- vertical resolution /
- model
-
表 1 敏感性试验设计
试验组A 网格距 Domain1 Domain2 Domain3 Domain4 1-L27 27 km 138×126 2-L27 27-9 km 138×126 274×199 3-L27 27-9-3 km 138×126 274×199 385×283 4-L27 27-9-3-1 km 138×126 274×199 385×283 373×352 试验组B 网格距 Domain1 Domain2 Domain3 Domain4 1-L30 27 km 138×126 2-L30 27-9 km 138×126 274×199 3-L30 27-9-3 km 138×126 274×199 385×283 4-L30 27-9-3-1 km 138×126 274×199 385×283 373×352 试验组C 网格距 Domain1 Domain2 Domain3 Domain4 3-L27 27-9-3 km 138×126 274×199 385×283 3-L30 27-9-3 km 138×126 274×199 385×283 3-L33 27-9-3 km 138×126 274×199 385×283 3-L36 27-9-3 km 138×126 274×199 385×283 3-L39 27-9-3 km 138×126 274×199 385×283 表 2 实验组A模拟路径和实际路径的距离误差
单位:km。 试验 24 h 48 h 72 h 96 h 平均 1-L27 48.0 8.0 85.0 83.0 56.0 2-L27 72.0 18.7 53.0 83.0 56.7 3-L27 72.0 45.5 76.0 71.0 66.1 4-L27 72.0 66.7 125.0 128.0 97.9 表 3 试验组B模拟路径和实际路径的距离误差
单位:km。 试验 24 h 48 h 72 h 96 h 平均 1-L30 46.0 70.0 25.0 20.0 40.2 2-L30 47.0 34.7 23.0 54.0 39.7 3-L30 45.0 34.6 16.7 1.6 24.5 4-L30 45.0 34.6 16.7 7.4 25.9 表 4 试验组A和试验组B模拟的台风登陆点和实际登陆点的误差
单位:km。 实验方案 误差 实验方案 误差 1-L27 173.0 1-L30 42.0 2-L27 106.0 2-L30 86.0 3-L27 82.0 3-L30 8.7 4-L27 266 4-L30 8.7 -
[1] 陈联寿, 孟智勇.我国热带气旋研究十年进展[J].大气科学, 2001, 25(3): 420-432. [2] 李英, 陈联寿, 张胜军.登陆我国热带气旋的统计特征[J].热带气象学报, 2004, 20(1):14-23. [3] 河惠卿, 王振会, 金正润, 等.积云参数化和微物理方案不同组合应用对台风路径模拟效果的影响[J].热带气象学报, 2009, 25(4):435-441 [4] GENTRY M S, LACKMANN G M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J]. Mon Wea Rev, 2010, 138(3): 688-704. [5] FIERRO A O, ROGERS R F, MARKS F D. The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model[J]. Mon Wea Rev, 2009, 137(11): 3 717-3 743. [6] 邓莲堂, 史学丽, 闫之辉.不同分辨率对淮河流域连续暴雨过程影响的中尺度模拟试验[J].热带气象学报, 2012, 28(2): 167-176. [7] 文映方, 刘迪宇, 谭伟才.模式水平分辨率对超强台风天兔强度和微结构特征的影响[J].热带气象学报, 2016, 32(4): 477-485. [8] SCHWARTZ C S, KAIN J S, WEISS S J, et al. Next-dayconvection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing[J].Mon Wea Rev, 2009, 137(9): 3 351-3 372. [9] KEVIN A H, GARY M L. Analysis of idealized tropical cyclone simulations using the weather research and forecasting model: Sensitivity to turbulence parameterization and grid spacing[J]. Mon Wea Rev, 2009, 137(2): 745-764. [10] SUN Y, YI L, ZHONG Z, et al. Dependence of model convergence on horizontal resolution and convective parameterization in simulations of a tropical cyclone at gray-zone resolutions[J]. J Geophy Res, 2013, 118(14): 7 715-7 732. [11] 廖洞贤, 朱艳秋.再论水平和垂直分辨率之间的协调[J].气象学报, 1995, 53(2): 129-137. [12] 廖洞贤.论大气模式的设计[J].气象学报, 1999, l57(5): 513-524. [13] 刘金波, 曾新民, 郑益群.区域气候模式分辨率对中国夏季气温模拟影响的评估[J].气象学报, 2011, 69(3): 534-543 [14] LINDZEN R S. Consistent vertical and horizontal resolution[J]. Mon Wea Rev, 1989, 117(11): 2 575-2 583. [15] 鞠永茂, 钟中, 卢伟.模式垂直分辨率对梅雨锋暴雨数值模拟的影响[J].气象科学, 2006, 26(1): 10-16. [16] 曾庆存.进一步提高气象灾害的监测, 预测和防控调度能力的前景[J].科学通报, 2017, 62(13): 1 315-1 323. [17] LUCAS M H, DALE R D. An ideal comparison of one-way and two-way grid nesting[J]. Mon Wea Rev, 2010, 138(6): 2 174-2 187. [18] 孙希进, 陈德辉, 伍湘君, 等.区域模式双向嵌套技术的理想试验分析[J].高原气象, 2014, 33(4): 1 022-1 033. [19] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF Version 3[Z]. NCAR Technical, 2005, 113: 7-25. [20] CHEN F, DUDHIA J, Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. Part I: Model Implementation and Sensitivity[J]. Mon Wea Rev, 2001, 129(4): 569-585. [21] LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model[J]. J Climate Appl Meteor, 1983, 22 (6): 1 065-1 092. [22] RUTLEDGE S A, HOBBS P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VⅢ: A model for the "seeder-feeder" process in warm-frontal rainbands[J]. J Atmos Sci, 1983, 40(5): 1 185-1 206. [23] HONG S Y, MON Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2 318-2 341. [24] MLAWER E J, TAUBMAN S J, BROWN P D, ct al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long-wave[J]. J Geophy Res, 1997, 102(7): 16 663-16 682. [25] DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Soc, 1989, 46(46): 3 077-3 107. [26] KAIN J S. The Kain-Fritsch convective parameterization : An update[J]. J Appl Meteorol, 2004, 43(1): 170-181. [27] 朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法(修订本)[M].北京:气象出版社, 1992: 734-748. [28] 万修全, 马伟伟, 吴德星, 等.一个区域耦合模式在不同分辨率下对台风"山神"的数值模拟[J].中国海洋大学学报, 2015, 45(3): 1-9. [29] KUMAR S. ROUTRAY A, TIWARI G, et al. Jain simulation of tropical cyclone 'phailin' using WRF modeling system[C]. Tropical Cyclone Activity over the North Indian Ocean, 2016, 307-316. [30] 王德立, 徐国强.高分辨率模式中积云参数化方案对模拟台风"凡亚比"的影响[J].气象科技, 2012, 40(6): 949-959. [31] CHRISTOPHER D, WANG W, CHEN S S Y, et al. Prediction of landfalling hurricanes with the advanced Hurricane WRF Model[J]. Mon Wea Rev, 2008, 136(6): 527-548. [32] 李靖, 马卫民, 马占宏, 等.台风数值模拟中模式垂直分辨率的影响分析[J].海洋技术, 2013, 32(2): 76-81. [33] ZHANG D L, ZHU L. Sensitivity of idealized hurricane intensity and structures under varying background flows and initial vortex intensities to different vertical resolutions in HWRF[J]. Mon Wea Rev, 2015, 143(4): 914-932. [34] FIERRO A O, SIMPSON J, LEMONE M A, et al. On how hot towers fuel the Hadley cell: An observational and modeling study of line-organized convection in the equatorial trough from TOGA COARE[J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2009, 66(9): 2 730-3 746. [35] WANG Y Q. How do outer spiral rainbands affect tropical cyclone structure and intensity?[J]. J Atmos Sci, 2009, 66(5): 1 250-1 273.