IMPACT OF ENVIRONMENTAL CONDITION ON EVOLUTION OF MORPHOLOGY OF TWO MCSS DURING A SEVERE CONVECTIVE STORM EVENT IN SOUTH CHINA
-
摘要: 2014年5月22日华南地区出现了一次大范围强对流天气过程,该过程中出现了两个中尺度对流系统(Mesoscale Convective System,MCS)MCS-A和MCS-B,两个MCS表现出迥异的形态特征,产生了不同的强对流天气。利用多源观测资料以及高分辨率数值模式分析了环境条件对于MCS形态特征的影响,结果表明:(1)广西夜间到凌晨边界层顶附近强盛的低空急流,使得MCS-A在北部山区出现后向建立(BB, back building)的形态特征,有利于大量级的短时强降水的出现;(2) MCS-A进入广西平原地区以后,强盛的边界层以上的低空急流使得能量垂直廓线的极大值在边界层高度以上,且风垂直切变特征不利于冷池前方的垂直运动发展,冷池前方无法连续触发对流,MCS-A逐渐演化成线状对流/层云伴随(TL/AS, Training Line/Adjoining stratiform)的形态特征,而后消亡;(3)在广东,能量极大值出现在大气底层,环境风廓线有利于冷池前方垂直运动发展,进而触发新的对流,新生成的MCS-B呈现典型的层云拖曳型(TS,trailing stratiform)形态,最终形成飑线,造成雷暴大风天气。Abstract: The evolution of morphology of two MCSs, i.e., MCS-A and MCS-B, which evolved into remarkably different morphology respectively and resulted in different convective weather in South China on 22 May 2014, is analyzed, through multi-source observation and high-resolution model simulation. The results indicate: (1) the prominent low level jet near the top of the boundary layer in the mountainous region of northern Guangxi province modulated MCS-A into a back building(BB) morphology, which induced short duration heavy rainfall; (2) After going down the mountains, MCS-A transformed into training line/adjoining stratiform (TL/AS) morphology and gradually decayed in Guangxi province, due to the elevated layer of maximum convective energy and storm-relative wind velocity above the boundary layer, which impinged the development of vertical motion and convective cell ahead of the cold pool; (3) In Guangdong province, the new-born MCS-B evolved into a typical trailing stratiform (TS) morphology, producing a relatively weak precipitation but generating gust wind. The convective energy and environmental wind profile condition, characterized by maximum value in the bottom layer, was in favor of the development of upward motion in front of the cold pool.
-
Key words:
- MCS /
- morphology /
- environmental condition
-
图 6 梧州(a)、河源(b)5月22日08时温度对数压力图
探空站位置如图 2a所示。
-
[1] 孙建华, 赵思雄.华南"94·6"特大暴雨的中尺度对流系统及其环境场研究Ⅰ.引发暴雨的β中尺度对流系统的数值模拟研究[J].大气科学, 2002, 26(4): 541-557. [2] 蒙伟光, 张艳霞, 袁金南, 等. 2014.华南沿海2011年7月15-18日持续暴雨过程中的季风槽与中尺度对流系统相互作用[J].气象学报, 2014, 72(3):508-525. [3] 方翀, 林隐静, 曹艳察, 等.华南地区西风带飑线和台风飑线环境场特征统计对比分析[J].热带气象学报, 2017, 32(6): 965-974. [4] 叶朗明, 伍志方, 张华龙, 等.相同季节和相似区域华南两次飑线过程比较分析[J].暴雨灾害, 2016, 35(5): 445-454. [5] 何立富, 陈涛, 孔期.华南暖区暴雨研究进展[J].应用气象学报, 2016, 27(5): 559-69. [6] 孙建华, 赵思雄.华南"94·6"特大暴雨的中尺度对流系统及其环境场研究Ⅱ.物理过程、环境场以及地形对中尺度对流系统的作用[J].大气科学, 2002, 26(5): 633-646. [7] 蒙伟光, 张艳霞, 戴光丰, 等.华南沿海一次暴雨中尺度对流系统的形成和发展过程[J].热带气象学报, 2007, 23(6): 521-530. [8] WANG H, LUO Y, JOU B J. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis[J]. J Geophy Res, 2015, 119(23):13, 206-13, 232. [9] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(10):3 413-3 436. [10] SCHUMACHER R S, JOHNSON R H. Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J]. Mon Wea Rev, 2005, 133(4): 961-76. [11] 梁巧倩, 项颂翔, 林良根, 等.华南前汛期MCS的活动特征及组织发展形式[J].热带气象学报, 2012, 28(4): 541-551. [12] 王晓芳, 赖安伟, 王志斌.一个长生命期准静止中尺度对流系统的观测特征及其持续的环境条件[J].大气科学, 2014, 38(3): 421-37. [13] 康兆萍, 林永辉.华南一次飑线过程线状对流模态变异机理研究[J].大气科学学报, 2017, 40(5): 631-640. [14] ROTUNNO. A theory for strong, long-lived squall lines[J]. Atmos Sci, 2004, 45(3): 463-485. [15] PETERS J M, Schumacher R S. The simulated structure and evolution of a quasi-idealized warm-season convective system with a training convective line[J]. J Atmos Sci. 72(5): 1 987-2 010. [16] HOXIT L R, CHAPPELL C F, MICHAEL F J. Formation of mesolows or pressure troughs in advance of cumulonimbus clouds[J]. Mon Wea Rev, 1976, 104(11): 1 419-28. [17] HE M Y, LIU H B, WANG B, et al. A modeling study of a low-level jet along the Yun-gui plateau in South china[J]. App Meteor & Climat, 2016, 55(1): 150917121207009. [18] LUO Y, WU M, REN F, et al. Synoptic situations of extreme hourly precipitation over china[J]. J Climate, 2016, 29(24). [19] 漆梁波.高分辨率数值模式在强对流天气预警中的业务应用进展[J].气象, 2015, 41(6): 661-673. -