ANALYSIS OF EFFECTIVE DETECTION DISTANCE OF GROUND-BASED MICROWAVE RADIOMETER IN THUNDERSTORM WEATHER IN COMPLEX MOUNTAINOUS TERRAINS
-
摘要: 利用2017年2月-2018年10月地基微波辐射计和无线电探空仪、闪电和雷达数据, 首先评估了微波辐射计温度和绝对湿度在不同高度的探测性能, 微波辐射计和无线电探空仪不同高度的温度的相关系数为0.800~0.985, 绝对湿度的相关系数为0.600~0.916;微波辐射计温度的标准差为3.9~6.1℃, 绝对湿度的标准差为0~4 g/m3, 无线电探空仪温度的标准差为4.2~6.1℃, 绝对湿度的标准差为0.1~4.2 g/m3; 微波辐射计和无线电探空仪温度绝对误差的标准差为1.06~2.90℃, 绝对湿度绝对误差的标准差为0.08~2.02 g/m3。二者K指数相关系数为0.945。其次利用K指数上升和下降到35℃的时次和不同距离闪电开始和结束时次做相关性分析, 结果表明在30 km处具有最大的相关系数(0.864), 这可能就是微波辐射计温度和湿度在复杂山地下雷暴天气中能够代表的大气层结的有效距离。最后统计分析了微波辐射计K指数上升达35℃时, 90%上游移向微波辐射计的雷暴回波(30 dBZ雷达回波超过-15℃高度层)距离微波辐射计平均距离为35.3 km, 移到微波辐射计附近平均需要92.8分钟, 局地雷暴(40 km以内)生成需要138.2分钟。Abstract: By using the data of ground-based microwave radiometer (MWR), radiosonde, lightning location system and radar from February 2017 to October 2018, we first evaluated temperature and absolute humidity detection performance of MWR at different altitude. It shows that the correlation coefficients of temperature between MWR and radiosonde are 0.800~0.985, and those of absolute humidity are 0.600~0.916; the standard deviations of temperature and absolute humidity of MWR are 3.9~6.1℃ and 0~4 g/m3, and those of radiosonde are 4.2~6.1℃ and 0.1~4.2 g/m3. Standard deviations of absolute error of temperature between MWR and radiosonde are 1.06~2.90℃, and those of absolute humidity are 0.08~2.02 g/m3. The correlation coefficients of K index between MWR and radiosonde is 0.945. Second, we evaluated the correlation coefficients of hours when K index derived from MWR rose and fell to 35℃ and when thunderstorms began and ended at different distances. It shows that the maximum correlation coefficient (0.864) is found at areas 30 km from the MWR, which may be taken as the areas over which the temperature and humidity measured by MWR is considered to be representative of the atmospheric conditions. Finally, statistical analysis shows that 90% of the thunderstorm echoes moving upstream to the MWR are 35.3 km away from the radiometer when K index of MWR rises to 35℃. Thunderstorm echoes refer to those where 30 dBZ radar echoes exceed the -15℃ level height. It takes 92.8 minutes on average for the thunderstorm echoes moving upstream to reach the vicinity of the MWR, and it takes 138.2 minutes for local thunderstorms within a range of 40 km to form.
-
Key words:
- microwave radiometer /
- K index /
- thunderstorm /
- effective detection distance /
- mountainous terrain
-
表 1 100 km以外移向微波辐射计的雷暴个例微波辐射计K指数上升达35 ℃时的时间和雷暴回波与微波辐射计距离、雷暴回波与微波辐射计距离30 km和距离最小时刻的时间以及三者的时间差
日期/
年月日K指数上升达35 ℃
时30 dBZ回波与
微波辐射计距离30 dBZ回波距
离微波辐射计
30 km时间35 dBZ回波与微
波辐射计距离最
小时间微波辐射计K指数
上升达35 ℃
时间微波辐射计K指数上
升达35℃与回波进
人30 km时的时间差微波辐射计K指数上升达
35℃与30 dBZ回波最接
近微波辐射计时的时间差170522 30.6 21:57 23:58 21:32 25 146 170621 40.3 22:09 23:34 21:37 32 117 170731 87.0 11:55 12:16 09:58 117 122 170420 21.6 22:40 23:54 22:52 -12 62 170507 57.3 21:19 22:33 20:23 56 130 170611 36.0 11:05 12:51 09:46 79 42 170612 22.4 01:36 02:45 01:51 -15 54 180312 42.3 20:30 22:01 19:51 39 45 180316 37.0 22:39 23:02 22:20 19 42 180821 30.6 09:43 11:38 08:50 53 168 平均 40.5 — — — 39 93 表 2 微波辐射计K指数上升达35 ℃及局地雷暴回波生成时间及二者时间差
日期/年月日 170723 170728 170729 180313 180723 180725 180803 180804 180805 180811 平均 微波辐射计K指数
上升达35℃时间12:35 11:06 09:31 14:20 10:23 15:01 11:44 08:31 09:05 09:20 — 雷达30 dBZ回
波生成时间14:05 14:42 13:02 16:52 13:03 17:32 13:34 09:49 10:22 11:47 — 二者时间差 90 216 211 152 160 151 110 78 77 137 138.2 -
[1] 杨波, 王园香, 蔡雪薇.我国华南江南春季雷暴气候特征分析[J].热带气象学报, 2019, 35(4):470-479. [2] 王婷波, 周康辉, 郑永光.我国中东部雷暴活动特征分析[J].气象, 2020, 46(2):189-199. [3] 李彩玲, 吴乃庚, 王硕甫, 等.台风"艾云尼" (2018)外围两次近距离龙卷的环境条件和雷达特征[J].热带气象学报, 2019, 35(4):446-457. [4] 黄先香, 炎利军, 王硕甫, 等. 1822号"山竹"台风龙卷过程观测与预警分析[J].热带气象学报, 2019, 35(4):458-469. [5] RAJEEVAN M, KESARKAR A, THAMPI S B, et al. Sensitivity of WRF cloud microphysics to simula-tions of a severe thunderstorm event over southeast India[J]. Ann Geophys, 2010, 28:603-619. [6] 朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法[M].北京: 气象出版社, 2007: 437-450. [7] SHOWALTER A K. A stability index for thunderstorm forecasting[J]. Bull Amer Meteor Soc, 1953, 34(6):250-252. [8] FUELBERG H E, BIGGAR D G. The preconvective environment of summer thunderstorms over the florida panhandle[J]. Wea Forecasting, 2009, 9(3):316-326. [9] JACOVIDES C P, YONETANI T. An evaluation of stability indices for thunderstorm prediction in greater cyprus[J]. Wea Forecasting, 1990, 5(4):559-569. [10] RATNAM M V, SANTHI Y D, RAJEEVAN M, et al. Diurnal variability of stability indices observed using radiosonde observations over a tropical station:comparison with microwave radiometer measurements[J]. Atmos Res, 2013, 124(Complete):21-33. [11] 齐琳琳, 刘玉玲, 赵思雄.一次强雷雨过程中对流参数对潜势预测影响的分析[J].大气科学, 2005, 29(4):536-548. [12] 余蓉.基于多对流参数的武汉地区雷电活动预报方法研究[J].气象科技, 2016, 44(2):269-274. [13] GÜLDNER J, SPÄNKUCH D. Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry[J]. J Atmos Oceanic Technol, 2001, 18(6):925-933. [14] RENJU R, RAJU C S, MATHEW N, et al. Tropical convective cloud characterization using ground-based microwave radiometric observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7):3774-3779. [15] MARTINET P, CIMINI D, FRANCESCO D A, et al, Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain:an Alpine valley case study[J]. Atmos Measurement Techniques, 2017, 10:3385-3402. [16] CAUMONT O, CIMINI D, LOHNERT U, et al. Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model[J]. Q J R Meteor Soc, 2016, 142(700):2692-2704. [17] 茆佳佳, 张雪芬, 王志诚, 等.多型号地基微波辐射计亮温准确性比对[J].应用气象学报, 2018, 29(6):86-98. [18] 王志诚, 张雪芬, 茆佳佳, 等.不同天气条件下地基微波辐射计探测性能比对[J].应用气象学报, 2018, 29(3):282-295. [19] XU G, XI B, ZHANG W, et al. Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings[J]. J Geophy Res:Atmos, 2015, 120(19):10313-10323. [20] 黄治勇, 徐桂荣, 王晓芳, 等.地基微波辐射资料在短时暴雨潜势预报中的应用[J].应用气象学报, 2013, 24(5):576-584. [21] 黄治勇, 周志敏, 徐桂荣, 等.风廓线雷达和地基微波辐射计在冰雹天气监测中的应用[J].高原气象, 2015, 34(1):269-278. [22] 魏东, 孙继松, 雷蕾, 等.三种探空资料在各类强对流天气中的应用对比分析[J].气象, 2011, 37(4):412-422. [23] 敖雪, 王振会, 徐桂荣, 等.地基微波辐射计资料在降水分析中的应用[J].暴雨灾害, 2011, 30(4):358-365. [24] 苟阿宁, 韩芳蓉, 张文刚, 等.地基微波辐射计观测资料在一次雷电潜势预报中的应用分析[J].热带气象学报, 2018, 34(2):268-278. [25] 行鸿彦, 张强, 季鑫源.基于地面电场资料的雷暴临近预报研究[J].大气科学学报, 2017, 40(1):111-117. [26] 陈潇潇, 钱昊钟, 周彬, 等.沿江苏南一次伴随"高架雷暴"的暴雪天气成因分析[J].大气科学学报, 2015, 38(6):836-844. [27] CHAN P W. Performance and application of a multi-wavelength, ground-based microwave radiometer in intense convective weather[J]. Meteorologische Zeitschrift, 2009, 18(3):253-265. [28] CHAN P W, LEE Y F. Application of a ground-based, multichannel microwave radiometer to the alerting of low-level windshear at an airport[J]. Meteorol Z, 2011(4):423-429. [29] MADHULATHA A, RAJEEVAN M, VENKAT RATNAM M, et al. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations[J]. J Geophy Res:Atmos, 2013, 118(1):1-13. [30] 石玉恒, 张义军, 郑栋, 等.北京地区雷暴的雷达回波特征与闪电活动的相关关系[J].气象, 2012, 38(1):66-71. [31] CIMINI D, NELSON M, GÜLDNER J, et al. Forecast indices from a ground-based microwave radiometer for operational meteorology[J]. Atmospheric Measurement Techniques, 2015, 8(1):315-333. [32] AIRES F, PRIGENT C, ROSSOW W B, et al. A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations[J]. J Geophy Res, 2001, 106(D14):14887-14907.