CONTRIBUTION OF MAJOR SSTA MODES TO TROPICAL CYCLONE GENESIS FREQUENCY OVER THE NORTH ATLANTIC
-
摘要: 利用美国国家飓风中心(National Hurricane Center, NHC)的Best Track Data (HURDAT2)数据和美国国家预报中心/大气研究中心(NCEP/NCAR)大气再分析资料, 运用广义平衡反馈分析方法(GEFA), 研究多个海盆主要海表温度异常(SSTA)模对北大西洋热带气旋生成频数(TCGN)气候变率的强迫作用。(1)北大西洋TCGN的气候变率对北大西洋三极型模态(NA1)和太平洋mega-ENSO式模态(P1)具有显著的响应, 对应的响应振幅分别为0.45和-0.28, 即当NA1(P1)的时间系数增加(减小)1个标准差时, 北大西洋TCGN将增加0.45(0.28)个。(2) TCGN对NA1、P1的气候变率、年代际变率有显著响应, 但对年际变率响应不显著。(3)北大西洋TCGN在1995年前后发生异常变化, 从平均8个增加到12.6个, NA1、P1对1995年后的TCGN异常增加的贡献分别为27%、45%。(4) NA1对北大西洋TC环境场的强迫中心多集中在20 °N附近, 而P1的多位于20 °N以南以及墨西哥湾地区, 为TC生成提供有利的动力和热力条件。
-
关键词:
- 北大西洋热带气旋生成频数 /
- GEFA /
- SSTA
Abstract: IContribution of major sea surface temperature anomaly(SSTA)modes to tropical cyclone genesis frequency(TCGN)over North Atlantic are analyzed based on the Best Track Data(HURDAT2)of National Hurricane Center(NHC) in 1970-2017、the monthly mean SST data of Hadley Center of sea ice and SST、NCEP/NCAR reanalysis monthly mean data and the generalized equilibrium feedback assessment (GEFA) method. The main conclusions are as follows(:1) TCGN climatic variability in North Atlantic has a significant response to NA1 and P1, the feedback intensities are 0.45 and -0.28(. 2) TCGN interdecadal variability in North Atlantic has a significant response to NA1 and P1, but the response is non-significant when it comes to interannual variability.(3)The average of TCGN in 1970-1995 is 8, while it rises to 12.6 in the later period. The contributions of NA1 and P1 in the later period GEFA are 27% and 45%.(4) When it comes to the local environment, the significant response areas to NA1 are located in 20 °N. And the significant response areas to P1 are located in south of 20 °N and the gulf of Mexico. -
表 1 各海盆SST前三个模态的方差贡献率及其累积贡献率(%)
方差贡献 P TI NA EOF1 51.1 28.7 25.9 EOF2 10 18.1 16.7 EOF3 7.1 11.8 10.1 EOF1+EOF2+EOF3 68.2 58.6 52.7 表 2 SSTA EOF主模态响应值对北大西洋TCGN气候变率、年际变率、年代际变率的方差贡献
主模态响应值 P1 P2 P3 TI1 TI2 TI3 NA1 NA2 NA3 气候变率 7.71% 0.66% 6.90% 5.42% 1.86% 0.03% 23.51% 0.01% 8.21% 年际 4.23% 5.83% 1.02% 0.53% 2.01% 0 5.27% 2.21% 7.93% 年代际 14.29% 1.33% 0.03% 1.39% 3.83% 0.01% 22.94% 3.54% 4.74% -
[1] 马超, 王兆隆, 赵文虎, 等.北大西洋热带气旋路径预报的难度变化分析[J].解放军理工大学学报(自然科学版), 2015, 16(3):273-280. [2] 李永平, 陈晶茹.美国飓风破坏力为何如此巨大[J].生命与灾害, 2012(11):4-7. [3] DAILEY P S, ZUBA G, LJUNG G, et al. On the Relationship between North Atlantic sea surface temperatures and U.S. hurricane landfall risk[J]. J Appl Meteor Climat, 2009, 48(1):111-129. [4] 陆奕年.近100年大西洋飓风发生频次加倍[J].气象科技, 2007, 35(5):735-735. [5] 丁一汇, E.R.莱特.影响北大西洋飓风形成的大尺度环流条件[J].海洋学报:中文版, 1984, 6(3):33-45. [6] 龚道溢, 周天军, 王绍武.北大西洋涛动变率研究进展[J].地球科学进展, 2001, 16(3):413-420. [7] CAYAN D R. Latent and sensible heat flux anomalies over the Northern Oceans:The connection to monthly atmospheric circulation[J]. J Climate, 1992, 5(4):354-370. [8] ELSNER J B, KOCHER B. Global tropical cyclone activity:A link to the North Atlantic Oscillation[J]. Geophy Res Lett, 2000, 27(1):129-132. [9] WANG R, WU L. Climate changes of Atlantic tropical cyclone formation derived from twentieth-century reanalysis[J]. J Climate, 2013, 26(22):8995-9005. [10] VECCHI G A, KNUTSON T R. On estimates of historical North Atlantic tropical cyclone activity[J]. J Climate, 2008, 21(14):3580-3600. [11] HOLLAND G J, WEBSTER P J. Heightened tropical cyclone activity in the North Atlantic:natural variability or climate trend?[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 365(1860):2695-2716. [12] MURAKAMI H, WANG B. Future Change of North Atlantic Tropical Cyclone Tracks:Projection by a 20-km-Mesh Global Atmospheric Model[J]. J Climate, 2010, 23(10):2699-2721. [13] SCHEMM S, CIASTO L M, LI C, et al. Influence of Tropical Pacific Sea Surface Temperature on the Genesis of Gulf Stream Cyclones[J]. J the Atmos Sci, 2016, 73(10):4203-4214. [14] ARPE K, LEROY S A G. Atlantic hurricanes-Testing impacts of local SSTs, ENSO, stratospheric QBO-Implications for global warming[J]. Quaternary International, 2009, 195(1-2):0-14. [15] LIU Z, WEN N, LIU Y. On the assessment of nonlocal climate feedback. Part I:The generalized equilibrium feedback assessment[J]. J Climate, 2008, 21(1):134-148. [16] WEN N, LIU Z, LIU Q, et al. Observed atmospheric responses to global SST variability modes:A unified assessment using GEFA[J]. J Climate, 2010, 23(7):1739-1759. [17] 江志红, 吴燕珠, 刘征宇, 等.基于广义平衡反馈方法的2009/2010年中国冬季气温异常型的诊断[J].热带气象学报, 2013, 29(1):28-36. [18] 李淑娟, 余锦华.中国东部夏季分区降水对海温异常响应特征的研究[J].气象科学, 2015, 35(1):44-51. [19] YU J. Contribution of major SSTA modes to the climate variability of tropical cyclone genesis frequency over the Western North Pacific[C]//AGU Fall Meeting, 2016. [20] 赵晓彤.西北太平洋热带气旋生成频数变化对海温异常响应特征的研究[D].南京: 南京信息工程大学, 2015. [21] 余锦华, 张晨, 方珂, 等.海温异常模之线性相互作用及其对西北太平洋热带气旋生成频数变化的影响[J].热带气象学报, 2016, 32(3):289-298. [22] LANDSEA C W. Downwaed trends in the frequency of intense Atlantic hurricanes during the past five dacades.[J]. Geophy Res Lett, 2013, 23(13):1697-1700. [23] ELSNER J B, JAGGER T, Niu X F. Changes in the rates of North Atlantic major hurricane activity during the 20th century[J]. Geophy Res Lett, 2000, 27(12):1743-1746. [24] ZHAO H, DUAN X, RAGA G B, et al. Potential large-Scale forcing mechanisms driving enhanced north Atlantic tropical cyclone activity since the Mid-1990s[J]. J Climate, 2018, 31(4):1377-1397. [25] WU Z, ZHANG P. Interdecadal variability of the mega-ENSO-NAO synchronization in winter[J]. Climate Dyn, 2015, 45(3-4):1117-1128. [26] 余丹丹, 张韧, 李荔珊, 等. 2010年和1998年西北太平洋热带气旋频数异常与东亚夏季风系统的关联性分析[J].大气科学学报, 2015, 38(1):19-26. [27] 杜予罡, 储惠芸.环境因子对西北太平洋热带气旋气候特征的影响[J].南京大学学报(自然科学), 2010, 46(3):254-260. [28] 白莉娜, 何敏, 王元, 等.西北太平洋风速垂直切变异常对热带气旋活动年际变化的影响[J].气象学报, 2010, 68(6):877-884. [29] PENG M S, FU B, LI T, et al. Developing versus nondeveloping disturbances for tropical cyclone formation. Part I:North atlantic[J]. Mon Wea Rev, 2012, 140(4):1047-1066. [30] 苏丽欣, 周锁铨, 吴战平, 等.西北太平洋热带气旋强度与环境气流切变关系的气候分析[J].气象科技, 2008, 36(5):561-566. [31] JONES J J, STEPHENSON T S, Taylor M A, et al. Statistical downscaling of North Atlantic tropical cyclone frequency and the amplified role of the Caribbean low-level jet in a warmer climate[J]. J Geophy Res, 2016, 121(8):3741-3758.