CONTRIBUTION OF ENVIRONMENTAL FACTORS TO THE CHANGE OF TROPICAL CYCLONE FREQUENCY IN THE SUMMER OF ENSO DEVELOPING AND DECAYING YEARS
-
摘要: 利用中国气象局上海台风研究所整编的热带气旋(Tropical Cyclone,TC)最佳路径数据集和欧洲中期天气预报中心的ERA再分析资料,分析了El Niño-South Oscillation (ENSO)发展年与衰减年西北太平洋(Western North Pacific,WNP)夏季(6—8月)总TC生成频数(Tropical Cyclone Genesis Frequency,TCGF)及其区域性特征,通过潜在生成指数(Genesis Potential Index,GPI)定量诊断各环境要素对TCGF变化的贡献。结果表明,西北太平洋TCGF总数异常在ENSO各位相并不显著,但其东南象限和西部的TCGF异常存在明显差异。在ENSO各位相,GPI异常的空间分布与TCGF异常的空间型相似。同一区域,各环境要素对TCGF异常的贡献不同,反映了ENSO不同位相影响TC生成变化的机理存在差异。WNP东南部(SEWNP)是对ENSO较敏感的区域,El Niño发展年,中东太平洋异常增暖激发的Rossby波西传导致SEWNP受异常正涡度环流控制,涡度对TCGF增加的贡献最大;El Niño衰减年,西北太平洋出现低层异常反气旋,其东侧异常东北气流将湿度相对较低的水汽输送至SEWNP,相对湿度降低导致TCGF显著减少。La Niña发展年,绝对涡度减小和垂直风切变增加对TCGF减少都有影响。WNP西部仅在La Niña衰减年出现TCGF显著负异常,低层绝对涡度减小的贡献最大,因为季风槽减弱,抑制了南海附近的TC生成。Abstract: This paper is to study the characteristics of tropical cyclone genesis frequency (TCGF) and Genesis Potential Index (GPI) and to diagnose the contribution of environmental factors to the change of GPI over the western North Pacific (WNP) during the summer of ENSO developing and decaying years, based on the data from the CMA and the ECMWF. Although there exists no significant change in the total TCGF in the WNP, the TCGF shows differences in southeastern WNP (SEWNP) and western WNP (WWNP). The TCGF pattern is similar to the GPI pattern in all phases and the SEWNP is sensitive to ENSO. Various contributions of environmental factors indicate that there are different reasons for TCGF change in all four phases. During El Niño developing years, the TCGF increases abnormally in this area because of the increasing absolute vorticity and the decreasing vertical wind shear (VWS). In this phase, Rossby waves are triggered by El Niño and thus there is an anomalous cyclone and easterly monsoon trough in the SEWNP. During El Niño decaying years, WNPAC-induced anomalous northeast wind delivers climatological dry air to SEWNP, which is the main factor for the decrease of TCGF. In La Niña developing years, absolute vorticity and VWS are main factors. In western WNP, there is only a significantly negative phase of TCGF during La Niña decaying years due to the diminishing absolute vorticity.
-
表 1 1971—2017年ENSO发展年与衰减年
ENSO位相 年份 El Niño发展年(El Niño DV) 1972,1982,1987,1991,1994,1997,2002,2009,2015 El Niño衰减年(El Niño DC) 1973,1983,1988,1992,1995,1998,2003,2010,2016 La Niña发展年(La Niña DV) 1973,1975,1984,1988,1995,1999,2007,2010,2011,2017 第1类La Niña发展年(La Niña DV1) 1973,1988,1995,2010 第2类La Niña发展年(La Niña DV2) 1975,1984,1999,2007,2011,2017 La Niña衰减年(La Niña DC) 1971,1974,1976,1985,1989,1996,2000,2008,2012 表 2 1971—2017年夏季ENSO发展年与衰减年西北太平洋TC生成频数异常
ENSO位相 总TC(TS及以上) 强TC(TY及以上) 气候态 11.43 6.04 El Niño DV +1.13 +1.74* El Niño DC -1.98 -1.82* La Niña DV -1.23 -1.74* La Niña DV1 -1.67 -1.54 La Niña DV2 -0.93 -1.88* La Niña DC +1.24 +1.40 其中*表示通过α=0.05显著性检验。 表 3 ENSO发展年与衰减年夏季西北太平洋环境要素异常
SEWNP δh1 δh2 δh3 δh4δGPI WWNP δh1 δh2 δh3 δh4δGPI El Niño DV 0.65(53.81%) 0.30(24.96%) -0.11(-8.78%) 0.36(30.00%) 1.20* El Niño DV 0.07(-9.48%) -0.36(50.36%) -0.13(18.22%) -0.29(40.91%) -0.72* El Niño DC -0.14(16.98%) -0.49(57.55%) -0.05(6.17%) -0.16(19.30%) -0.85* El Niño DC -0.14(-18.21%) 0.05(6.17%) 0.20(26.71%) 0.64(85.33%) 0.75* La Niña DV -0.40(31.12%) -0.35(27.90%) -0.04(2.86%) -0.48(38.12%) -1.27* La Niña DV -0.13(-22.55%) 0.27(47.17%) 0.13(21.98%) 0.30(53.40%) 0.57 La Niña DV1 -0.34(23.02%) -0.63(42.54%) -0.02(1.51%) -0.49(32.93%) -1.49* La Niña DV1 -0.26(-32.25%) 0.17(20.99%) 0.27(33.76%) 0.62(77.50%) 0.80 La Niña DV2 -0.43(38.27%) -0.17(14.99%) -0.05(4.05%) -0.48(42.69%) -1.12* La Niña DV2 -0.04(-9.88%) 0.33(81.35%) 0.03(6.60%) 0.09(21.92%) 0.41 La Niña DC -0.27(58.24%) -0.24(52.74%) 0.10(-22.68%) -0.05(11.69%) -0.46 La Niña DC -0.11(55.12%) -0.03(12.77%) -0.01(3.89%) -0.06(28.22%) -0.20 其中西北太平洋东南部(SEWNP)为140 °E~180 °,5~15 °N,西北太平洋西部(WWNP)为110~140 °E,5~20 °N,括号内为各项对于相对贡献率,*表示通过α=0.05显著性检验。 -
[1] KIM D, KIM H S, PARK D S R, et al. Variation of the tropical cyclone season start in the Western North Pacific[J]. J Climate, 2017, 30(9): 3 297-3 302. [2] PATRICOLA C M, CAMARGO S J, KLOTZBACH P J, et al. The influence of ENSO flavors on Western North Pacific tropical cyclone activity[J]. J Climate, 2018, 31(14): 5 395-5 416. [3] CAMARGO S J, SOBEL A H. Western North Pacific tropical cyclone intensity and ENSO[J]. J Climate, 2005, 18(15): 2 996-3 006. [4] HA Y, ZHONG Z, HU Y, et al. Influences of ENSO on Western North Pacific tropical cyclone kinetic energy and its meridional transport[J]. J Climate, 2013, 26(1): 322-332. [5] TENG H, LEE C, HSU H. Influence of ENSO on formation of tropical cloud clusters and their development into tropical cyclones in the Western North Pacific[J]. Geophys Res Lett, 2015, 41(24): 9 120-9 126. [6] ZHAO H, WANG C. On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer[J]. Climate Dyn, 2018. [7] WANG B, CHAN J C L. How Strong ENSO events affect tropical storm activity over the Western North Pacific[J]. J Climate, 2002, 15(13): 1 643-1 658. [8] HONG C, LI Y, LI T, et al. Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the Western North Pacific [J]. Geophys Res Lett, 2011, 38(16): 603-613. [9] HONG C C, LEE M Y, HSU H H, et al. Distinct influences of the ENSO-Like and PMM-Like SST anomalies on the mean TC genesis location in the Western North Pacific: the 2015 summer as an extreme example[J]. J Climate, 2018, 31(8): 3 049-3 059. [10] 谢佩妍, 陶丽, 李俊徽, 等.西北太平洋热带气旋在ENSO发展和衰减年的路径变化[J].大气科学, 2018, 42(5): 987-999. [11] CHAN J C L. Tropical cyclone activity over the Western North Pacific associated with El Niño and La Niña Events[J]. J Climate, 2000, 13 (16): 2 960-2 972. [12] ZHANG R, MIN Q, SU J. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone[J]. Science China (Earth Sciences), 2017, 60(6):114-122. [13] XIE S P, HU K, HAFNER J, et al. Indian Ocean capacitor effect on indo-western Pacific climate during the summer following El Niño[J]. J Climate, 2009, 22(3): 730-747. [14] DU Y, XIE S P, HUANG G, et al. Role of air-sea interaction in the long persistence of El Niño-Induced North Indian Ocean warming[J]. J Climate, 2009, 22(8): 2 023-2 038. [15] BO W, LI T, ZHOU T J. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer[J]. J Climate, 2010, 23(11): 2 974-2 986. [16] DU Y, YANG L, XIE S P. Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño[J]. J Climate, 2011, 24(1): 315-322. [17] 李慧敏, 徐海明, 李智玉.厄尔尼诺年西北太平洋异常反气旋的年际变化特征及其影响[J].气象学报, 2017, 75(4):581-595. [18] EMANUEL K A, NOLAN D S. Tropical cyclone activity and the global climate system[C]//26th Conference on hurricanes and tropical meteorology. Miami: Amer. Meteor. Soc., 2004: 240-241. [19] KERRY A. EMANUEL. The maximum intensity of hurricanes[J]. J Atmos Sci, 1988, 45(7): 1 143-1 155. [20] 周旭, 余锦华, 王志福.西北太平洋热带气旋频数的气候变化及其与环境要素间的联系[J].气象科学, 2013, 33(1): 43-50. [21] CAMARGO S J, EMANUEL K A, SOBEL A H. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis[J]. J Climate, 2007, 20(19): 4 819-4 834. [22] YANASE W, SATOH M, TANIGUCHI H, et al. Seasonal and intraseasonal modulation of tropical cyclogenesis environment over the Bay of Bengal during the extended summer monsoon[J]. J Climate, 2012, 25(8): 2 914-2 930. [23] LI Z, YU W, LI T, et al. Bimodal character of cyclone climatology in the bay of bengal modulated by monsoon seasonal cycle[J]. J Climate, 2013, 26(3):1 033-1 046. [24] YU J, LI T, TAN Z, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J]. Climate Dyn, 2016, 46(3-4): 865-877. [25] 霍利微, 郭品文, 张福颖.夏季热带北大西洋海温异常对西北太平洋热带气旋生成的影响[J].大气科学学报, 2016, 39(1):55-63. [26] 赵晓彤, 余锦华, 廖桉桦, 等.北大西洋热带气旋生成频数变化对海温异常响应特征的研究[J].热带气象学报, 2020, 36(2):208-218. [27] 丁治英, 张月萌, 赵向军.西太平洋大尺度环境场对TC生成初期的影响[J].大气科学学报, 2016, 39(1):46-54. [28] RAYNER N A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J Geophy Res, 2003, 108(D14): 4 407. [29] YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. J Atmos Ocean Techn, 2014, 31(2): 287-301. [30] 王敏, 徐祥德, 李英.西北太平洋热带气旋路径异常偏折的分类特征[J].热带气象学报, 2019, 35(2): 35-44. [31] UPPALA. The ERA-40 re-analysis[J]. Q J R Meteor Soc, 2006, 131(612) :2961-3012. [32] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J]. Quart J Roy Meteor Soc, 2011, 137(656):553-597. [33] TRENBERTH K E, STEPANIAK D P. LETTERS: Indices of El Niño evolution[J]. J Climate, 2000, 14(8): 1 697-1 701. [34] 叶家成, 杜新观, 余锦华.影响中国大陆热带气旋路径分类及其特征研究[J].气象科学, 2019(3): 304-311. [35] CHEN MING, LI T, SHEN X, et al. Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña[J]. J Climate, 2016, 29(72):2 201-2 220.