ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ENSO发展年与衰减年夏季环境要素对热带气旋生成频数变化的贡献

杜新观 余锦华

杜新观, 余锦华. ENSO发展年与衰减年夏季环境要素对热带气旋生成频数变化的贡献[J]. 热带气象学报, 2020, 36(2): 244-253. doi: 10.16032/j.issn.1004-4965.2020.024
引用本文: 杜新观, 余锦华. ENSO发展年与衰减年夏季环境要素对热带气旋生成频数变化的贡献[J]. 热带气象学报, 2020, 36(2): 244-253. doi: 10.16032/j.issn.1004-4965.2020.024
Xin-guan DU, Jin-hua YU. CONTRIBUTION OF ENVIRONMENTAL FACTORS TO THE CHANGE OF TROPICAL CYCLONE FREQUENCY IN THE SUMMER OF ENSO DEVELOPING AND DECAYING YEARS[J]. Journal of Tropical Meteorology, 2020, 36(2): 244-253. doi: 10.16032/j.issn.1004-4965.2020.024
Citation: Xin-guan DU, Jin-hua YU. CONTRIBUTION OF ENVIRONMENTAL FACTORS TO THE CHANGE OF TROPICAL CYCLONE FREQUENCY IN THE SUMMER OF ENSO DEVELOPING AND DECAYING YEARS[J]. Journal of Tropical Meteorology, 2020, 36(2): 244-253. doi: 10.16032/j.issn.1004-4965.2020.024

ENSO发展年与衰减年夏季环境要素对热带气旋生成频数变化的贡献

doi: 10.16032/j.issn.1004-4965.2020.024
基金项目: 

国家自然科学基金项目 41575083

国家自然科学基金项目 41730961

详细信息
    通讯作者:

    余锦华,女,安徽省人,教授,博士研究生导师,从事热带气旋、极端天气气候等方面的研究。E-mail: jhyu@nuist.edu.cn

  • 中图分类号: P444

CONTRIBUTION OF ENVIRONMENTAL FACTORS TO THE CHANGE OF TROPICAL CYCLONE FREQUENCY IN THE SUMMER OF ENSO DEVELOPING AND DECAYING YEARS

  • 摘要: 利用中国气象局上海台风研究所整编的热带气旋(Tropical Cyclone,TC)最佳路径数据集和欧洲中期天气预报中心的ERA再分析资料,分析了El Niño-South Oscillation (ENSO)发展年与衰减年西北太平洋(Western North Pacific,WNP)夏季(6—8月)总TC生成频数(Tropical Cyclone Genesis Frequency,TCGF)及其区域性特征,通过潜在生成指数(Genesis Potential Index,GPI)定量诊断各环境要素对TCGF变化的贡献。结果表明,西北太平洋TCGF总数异常在ENSO各位相并不显著,但其东南象限和西部的TCGF异常存在明显差异。在ENSO各位相,GPI异常的空间分布与TCGF异常的空间型相似。同一区域,各环境要素对TCGF异常的贡献不同,反映了ENSO不同位相影响TC生成变化的机理存在差异。WNP东南部(SEWNP)是对ENSO较敏感的区域,El Niño发展年,中东太平洋异常增暖激发的Rossby波西传导致SEWNP受异常正涡度环流控制,涡度对TCGF增加的贡献最大;El Niño衰减年,西北太平洋出现低层异常反气旋,其东侧异常东北气流将湿度相对较低的水汽输送至SEWNP,相对湿度降低导致TCGF显著减少。La Niña发展年,绝对涡度减小和垂直风切变增加对TCGF减少都有影响。WNP西部仅在La Niña衰减年出现TCGF显著负异常,低层绝对涡度减小的贡献最大,因为季风槽减弱,抑制了南海附近的TC生成。

     

  • 图  1  1971—2017年各月Niño3.4指数

    黑色柱形为当年夏季(6—8月)。

    图  2  ENSO发展年与衰减年西北太平洋夏季TC生成频数异常(a~f)与气候态分布(g)

    黑色与灰色方框分别为通过α=0.05显著性检验的正异常与负异常区域。单位:频次/年。

    图  3  1971—2017年夏季ENSO发展年与衰减年潜在生成指数异常

    打点区域为通过α=0.05显著性检验区域。

    图  4  1971—2017年夏季ENSO发展年与衰减年垂直风切变(填色)(a,c,e)、850 hPa风场(矢量)、600 hPa相对湿度(填色)和850 hPa相对涡度异常(等值线)(b,d,f)

    打点与灰色阴影区域分别为填色标量场与等值线通过α=0.05显著性检验的区域,矢量场仅显示通过α=0.05显著性检验的区域。

    表  1  1971—2017年ENSO发展年与衰减年

    ENSO位相 年份
    El Niño发展年(El Niño DV) 1972,1982,1987,1991,1994,1997,2002,2009,2015
    El Niño衰减年(El Niño DC) 1973,1983,1988,1992,1995,1998,2003,2010,2016
    La Niña发展年(La Niña DV) 1973,1975,1984,1988,1995,1999,2007,2010,2011,2017
    第1类La Niña发展年(La Niña DV1) 1973,1988,1995,2010
    第2类La Niña发展年(La Niña DV2) 1975,1984,1999,2007,2011,2017
    La Niña衰减年(La Niña DC) 1971,1974,1976,1985,1989,1996,2000,2008,2012
    下载: 导出CSV

    表  2  1971—2017年夏季ENSO发展年与衰减年西北太平洋TC生成频数异常

    ENSO位相 总TC(TS及以上) 强TC(TY及以上)
    气候态 11.43 6.04
    El Niño DV +1.13 +1.74*
    El Niño DC -1.98 -1.82*
    La Niña DV -1.23 -1.74*
    La Niña DV1 -1.67 -1.54
    La Niña DV2 -0.93 -1.88*
    La Niña DC +1.24 +1.40
    其中*表示通过α=0.05显著性检验。
    下载: 导出CSV

    表  3  ENSO发展年与衰减年夏季西北太平洋环境要素异常

    SEWNP δh1 δh2 δh3 δh4 δGPI WWNP δh1 δh2 δh3 δh4 δGPI
    El Niño DV 0.65(53.81%) 0.30(24.96%) -0.11(-8.78%) 0.36(30.00%) 1.20* El Niño DV 0.07(-9.48%) -0.36(50.36%) -0.13(18.22%) -0.29(40.91%) -0.72*
    El Niño DC -0.14(16.98%) -0.49(57.55%) -0.05(6.17%) -0.16(19.30%) -0.85* El Niño DC -0.14(-18.21%) 0.05(6.17%) 0.20(26.71%) 0.64(85.33%) 0.75*
    La Niña DV -0.40(31.12%) -0.35(27.90%) -0.04(2.86%) -0.48(38.12%) -1.27* La Niña DV -0.13(-22.55%) 0.27(47.17%) 0.13(21.98%) 0.30(53.40%) 0.57
    La Niña DV1 -0.34(23.02%) -0.63(42.54%) -0.02(1.51%) -0.49(32.93%) -1.49* La Niña DV1 -0.26(-32.25%) 0.17(20.99%) 0.27(33.76%) 0.62(77.50%) 0.80
    La Niña DV2 -0.43(38.27%) -0.17(14.99%) -0.05(4.05%) -0.48(42.69%) -1.12* La Niña DV2 -0.04(-9.88%) 0.33(81.35%) 0.03(6.60%) 0.09(21.92%) 0.41
    La Niña DC -0.27(58.24%) -0.24(52.74%) 0.10(-22.68%) -0.05(11.69%) -0.46 La Niña DC -0.11(55.12%) -0.03(12.77%) -0.01(3.89%) -0.06(28.22%) -0.20
    其中西北太平洋东南部(SEWNP)为140 °E~180 °,5~15 °N,西北太平洋西部(WWNP)为110~140 °E,5~20 °N,括号内为各项对于相对贡献率,*表示通过α=0.05显著性检验。
    下载: 导出CSV
  • [1] KIM D, KIM H S, PARK D S R, et al. Variation of the tropical cyclone season start in the Western North Pacific[J]. J Climate, 2017, 30(9): 3 297-3 302.
    [2] PATRICOLA C M, CAMARGO S J, KLOTZBACH P J, et al. The influence of ENSO flavors on Western North Pacific tropical cyclone activity[J]. J Climate, 2018, 31(14): 5 395-5 416.
    [3] CAMARGO S J, SOBEL A H. Western North Pacific tropical cyclone intensity and ENSO[J]. J Climate, 2005, 18(15): 2 996-3 006.
    [4] HA Y, ZHONG Z, HU Y, et al. Influences of ENSO on Western North Pacific tropical cyclone kinetic energy and its meridional transport[J]. J Climate, 2013, 26(1): 322-332.
    [5] TENG H, LEE C, HSU H. Influence of ENSO on formation of tropical cloud clusters and their development into tropical cyclones in the Western North Pacific[J]. Geophys Res Lett, 2015, 41(24): 9 120-9 126.
    [6] ZHAO H, WANG C. On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer[J]. Climate Dyn, 2018.
    [7] WANG B, CHAN J C L. How Strong ENSO events affect tropical storm activity over the Western North Pacific[J]. J Climate, 2002, 15(13): 1 643-1 658.
    [8] HONG C, LI Y, LI T, et al. Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the Western North Pacific [J]. Geophys Res Lett, 2011, 38(16): 603-613.
    [9] HONG C C, LEE M Y, HSU H H, et al. Distinct influences of the ENSO-Like and PMM-Like SST anomalies on the mean TC genesis location in the Western North Pacific: the 2015 summer as an extreme example[J]. J Climate, 2018, 31(8): 3 049-3 059.
    [10] 谢佩妍, 陶丽, 李俊徽, 等.西北太平洋热带气旋在ENSO发展和衰减年的路径变化[J].大气科学, 2018, 42(5): 987-999.
    [11] CHAN J C L. Tropical cyclone activity over the Western North Pacific associated with El Niño and La Niña Events[J]. J Climate, 2000, 13 (16): 2 960-2 972.
    [12] ZHANG R, MIN Q, SU J. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone[J]. Science China (Earth Sciences), 2017, 60(6):114-122.
    [13] XIE S P, HU K, HAFNER J, et al. Indian Ocean capacitor effect on indo-western Pacific climate during the summer following El Niño[J]. J Climate, 2009, 22(3): 730-747.
    [14] DU Y, XIE S P, HUANG G, et al. Role of air-sea interaction in the long persistence of El Niño-Induced North Indian Ocean warming[J]. J Climate, 2009, 22(8): 2 023-2 038.
    [15] BO W, LI T, ZHOU T J. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer[J]. J Climate, 2010, 23(11): 2 974-2 986.
    [16] DU Y, YANG L, XIE S P. Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño[J]. J Climate, 2011, 24(1): 315-322.
    [17] 李慧敏, 徐海明, 李智玉.厄尔尼诺年西北太平洋异常反气旋的年际变化特征及其影响[J].气象学报, 2017, 75(4):581-595.
    [18] EMANUEL K A, NOLAN D S. Tropical cyclone activity and the global climate system[C]//26th Conference on hurricanes and tropical meteorology. Miami: Amer. Meteor. Soc., 2004: 240-241.
    [19] KERRY A. EMANUEL. The maximum intensity of hurricanes[J]. J Atmos Sci, 1988, 45(7): 1 143-1 155.
    [20] 周旭, 余锦华, 王志福.西北太平洋热带气旋频数的气候变化及其与环境要素间的联系[J].气象科学, 2013, 33(1): 43-50.
    [21] CAMARGO S J, EMANUEL K A, SOBEL A H. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis[J]. J Climate, 2007, 20(19): 4 819-4 834.
    [22] YANASE W, SATOH M, TANIGUCHI H, et al. Seasonal and intraseasonal modulation of tropical cyclogenesis environment over the Bay of Bengal during the extended summer monsoon[J]. J Climate, 2012, 25(8): 2 914-2 930.
    [23] LI Z, YU W, LI T, et al. Bimodal character of cyclone climatology in the bay of bengal modulated by monsoon seasonal cycle[J]. J Climate, 2013, 26(3):1 033-1 046.
    [24] YU J, LI T, TAN Z, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J]. Climate Dyn, 2016, 46(3-4): 865-877.
    [25] 霍利微, 郭品文, 张福颖.夏季热带北大西洋海温异常对西北太平洋热带气旋生成的影响[J].大气科学学报, 2016, 39(1):55-63.
    [26] 赵晓彤, 余锦华, 廖桉桦, 等.北大西洋热带气旋生成频数变化对海温异常响应特征的研究[J].热带气象学报, 2020, 36(2):208-218.
    [27] 丁治英, 张月萌, 赵向军.西太平洋大尺度环境场对TC生成初期的影响[J].大气科学学报, 2016, 39(1):46-54.
    [28] RAYNER N A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J Geophy Res, 2003, 108(D14): 4 407.
    [29] YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. J Atmos Ocean Techn, 2014, 31(2): 287-301.
    [30] 王敏, 徐祥德, 李英.西北太平洋热带气旋路径异常偏折的分类特征[J].热带气象学报, 2019, 35(2): 35-44.
    [31] UPPALA. The ERA-40 re-analysis[J]. Q J R Meteor Soc, 2006, 131(612) :2961-3012.
    [32] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J]. Quart J Roy Meteor Soc, 2011, 137(656):553-597.
    [33] TRENBERTH K E, STEPANIAK D P. LETTERS: Indices of El Niño evolution[J]. J Climate, 2000, 14(8): 1 697-1 701.
    [34] 叶家成, 杜新观, 余锦华.影响中国大陆热带气旋路径分类及其特征研究[J].气象科学, 2019(3): 304-311.
    [35] CHEN MING, LI T, SHEN X, et al. Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña[J]. J Climate, 2016, 29(72):2 201-2 220.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  17
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-12
  • 修回日期:  2020-01-12
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回