CHARACTERISTICS AND EVALUATION OF DIURNAL RAINFALL VARIATION IN RAINY SEASONS IN GUANGDONG BASED ON GPM SATELLITE
-
摘要: 新一代全球降水观测计划GPM作为TRMM卫星的继承者,在物理探测和降水反演算法上具有明显进步。以广东省雨量自动站为基准,对2014—2018年间GPM的格点降水估测产品IMERG(V5B)的日变化特征和估测误差进行分析。结果表明,IMERG能清晰反映广东前、后汛期的降水双峰型特征,但对下午降水峰值明显高估,峰值出现时间滞后;而对于沿海早晨峰值降水则明显低估,对于降水极值,低估更加显著。IMERG对两个峰值的估测误差受不同因素影响,下午峰值降水的相对偏差与地形密切相关,珠江三角洲平原为稳定高估区,地形高度越高,低估幅度越大;而早晨峰值降水极值负偏差与地形高度、降水量的相关性均较小。对出现显著负偏差的早晨沿海降水样本日进行925 hPa风场合成,可知IMERG明显低估时,对应区域上游较强的超低空西南气流与风速夜间增长。IMERG对这一季风活动背景降水的低估构成了其估测早晨降水误差的主要来源。Abstract: As the successor to the Tropical Rainfall Measuring Mission (TRMM), the new generation Global Precipitation Measurement Mission (GPM) is considered to have made significant progress in precipitation estimation. The complex features of rainfall diurnal variation and estimation errors of the GPM grid precipitation estimation product IMERG (V5B) are examined using hourly rain gauge data in Guangdong Province during 2014—2018. The bimodal characteristics of diurnal rainfall in the annually first and second rainy seasons are clearly shown. IMERG products report more afternoon rainfall than the rain gauge shows, and the peak predicted is later than the real peak. However, they significantly underestimate the morning rainfall at coasts. The estimation errors of these two peaks are due to different reasons. As for afternoon rainfall, errors are spatially relevant to complex terrain. Particularly, the Pearl River Delta plain is a stable overestimation region, and the higher the terrain, the greater the underestimate. The negative deviation of morning rainfall has little correlation with terrain height or precipitation level. All daily precipitation samples with significant negative deviation are collected and the average 925 hPa wind fields are averagely combined. In areas where a clear negative bias is observed, the low-level circulation is mainly manifested as strong ultra-low southwest airstream and obvious nocturnal increase of the low-level wind field. IMERG's underestimation in the background of such monsoon activity constitutes the main source of its estimation error of morning peak rainfall in Guangdong.
-
Key words:
- GPM /
- IMERG /
- rainfall diurnal variation /
- monsoon precipitation /
- terrain error
-
表 1 分析区域属性表
区域代号 经度范围 纬度范围 对应降水中心 Reg1 113.0~114.8 °E 23.3~24.2 °N 粤中内陆 Reg2 111.5~113.6 °E 21.6~22.7 °N 粤西沿海 Reg3 114.0~116.5 °E 22.5~23.3 °N 粤东沿海 表 2 不同样本日选取方案标准
样本日选取方案 Reg2雨量极值/mm Reg3雨量极值/mm Reg2极值相对偏差 Reg3极值相对偏差 A <10 <10 - - B ≥10 ≥10 >0 >0 C ≥10 ≥10 <-0.3 >0 D ≥10 ≥10 >0 <-0.3 -
[1] 宇如聪, 李建, 陈昊明, 等.中国大陆降水日变化研究进展[J].气象学报, 2014, 72(5): 948-968. [2] JIANG Z, ZHANG D, XIA R, et al. Diurnal Variations of Presummer Rainfall over Southern China[J]. J Climate, 2017, 30(2): 755-773. [3] LI J, YU R, ZHOU T. Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China[J]. J Climate, 2008, 21(22): 6036-6043. [4] HUANG W, WANG S. Impact of land-sea breezes at different scales on the diurnal rainfall in Taiwan[J]. Climate Dyn, 2014, 43(7): 1951-1963. [5] CHEN G, SHA W, IWASAKI T. Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality[J]. J Geophy Res, 2009, 114: D13103-. [6] HUANG W, CHAN J. Maintenance mechanisms for the early‐morning maximum summer rainfall over southeast China[J]. Quart J Roy Meteor Soc, 2011, 137(657): 959-968. [7] 周静, 郑永骏, 苗春生, 等.梅雨锋强降水与低空急流日变化的观测分析和数值模拟[J].热带气象学报, 2017, 33(5): 750-761. [8] CARBONE R, TUTTLE J, AHIJEVYCH D, et al. Inferences of predictability associated with warm season precipitation episodes[J]. J Atmos Sci, 2002, 59(13): 2033-2056. [9] ZHOU T, YU R, CHEN H, et al. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations[J]. J Climate, 2008, 21(16): 3997-4010. [10] CHEN G, LAN R, ZENG W, et al. Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China)[J]. J Climate, 2018, 31(5): 1703-1724. [11] CHEN G, SHA W, IWASAKI T. Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality[J]. J Geophy Res, 2009, 114: D13103. [12] CHEN S, TIAN Y, BEHRANGI A, et al. Precipitation spectra analysis over China with high-resolution measurements from optimally merged satellite gauge observations-Part Ⅰ: Spatial and seasonal analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 2966-2978. [13] KHAN S, HONG Y, GOURLEY J, et al. Spatial and diurnal variability of monsoon systems assessed by TRMM rain rate over Indus Basin[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4325-4335. [14] TAN M, DUAN Z. Assessment of GPM and TRMM precipitation products over Singapore[J]. Remote Sensing, 2017, 9(7): 720. [15] LIU C, ZIPSER E. The global distribution of largest, deepest, and most intense precipitation systems[J]. Geophy Res Lett, 2015, 42(9): 3591-3595. [16] 唐国强, 万玮, 曾子悦, 等.全球降水测量计划及其最新进展综述[J].遥感技术与应用, 2015, 30(4): 607-615. [17] GUO H, CHEN S, BAO A, et al. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China[J]. Atmos Res, 2016, 176-177: 121-133. [18] WEI G, LU H T, CROW W, et al. Evaluation of satellite-based precipitation products from IMERG V04A and V03D, CMORPH and TMPA with gauged rainfall in three climatologic zones in China[J]. Remote Sensing, 2017, 10(2): 30. [19] ZHAO H, YANG B, YANG S, et al. Systematical estimation of GPM-based global satellite mapping of precipitation products over China[J]. Atmos Res, 2018, 201: 206-217. [20] 李伶杰, 胡庆芳, 黄勇, 等.近实时卫星降水数据对南京"20170610"极端性强降水过程的监测分析[J].高原气象, 2018, 37(3):806- 814.. [21] WANG C, TANG G, HAN Z, et al. Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: Similarity, difference and improvements[J]. J Hydrology, 2018, 564: 342-356. [22] SUNGMIN O, KIRSTETTER P. Evaluation of diurnal variation of GPM IMERG‐derived summer precipitation over the contiguous US using MRMS data[J]. Quart J Roy Meteor Soc, 2018, 144: 270-281. [23] 李江南, 王安宇, 蒙伟光, 等.广东省前汛期和后汛期降水的气候特征[J].中山大学学报(自然科学版), 2002, 41(3): 91-94. [24] 梁巧倩, 蒙伟光, 孙喜艳, 等.广东前汛期锋面强降水和后汛期季风强降水特征对比分析[J].热带气象学报, 2019, 35(1): 51-62. [25] 郑腾飞, 刘显通, 万齐林, 等.近50年广东省分级降水的时空分布特征及其变化趋势的研究[J].热带气象学报, 2017, 33(2): 212-220. [26] 王坚红, 杨艺亚, 苗春生, 等.华南沿海暖区辐合线暴雨地形动力机制数值模拟研究[J].大气科学, 2017, 41(4): 784-796. [27] 苗春生, 杨艺亚, 王坚红, 等.两类华南沿海暖区暴雨特征及热力发展机制对比研究[J].热带气象学报, 2017, 33(1): 53-63. [28] CHEN X, ZHANG F, ZHAO K. Diurnal variations of the land-sea breeze and its related precipitation over South China[J]. J Atmos Sci, 2016, 73(12): 4793-4815. [29] DU Y, CHEN G. Heavy rainfall associated with double low-level jets over Southern China. Part I: Ensemble-Based analysis[J]. Mon Wea Rev, 2018, 146(11): 3827-3844. [30] CHEN X, ZHAO K, XUE M. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data[J]. J Geophy Res, 2014, 22(119): 12447-12465.