A STUDY ON THE ACCURACY OF TEMPERATURE PROFILE RETRIEVED FROM GIIRS/FY-4A OVER THE EAST AND SOUTH CHINA SEA
-
摘要: 基于欧洲中期天气预报中心再分析资料ERA5,对GIIRS/FY-4A温度反演廓线在我国台风高发期东海和南海海区的反演精度进行研究,结果表明:(1)东海海区,无云时GIIRS质量控制0的数据总体RMSE为1.71 K,150~450 hPa高度范围内RMSE小于1 K,450 hPa至近海面RMSE在2 K以内。质量控制1的数据反演精度低且随高度的增加误差增大;有云时,质量控制0和1的反演数据总体RMSE为4.72 K和5.55 K。(2)南海海区,无云时,质量控制0的数据总体RMSE为1.67 K,150~800 hPa范围内RMSE小于1 K,反演精度较东海海区略高。质量控制1的数据RMSE为5.07 K。有云时,质量控制0和1的数据RMSE为6.68 K和7.56 K。(3)随着台风“利奇马”等级加强直至最大等级(海上发展阶段),GIIRS可信度较高的反演数据量呈现下降趋势,反演台风周边热力结构存在诸多不确定性,需要借助其他资料进行验证。
-
关键词:
- 温度廓线 /
- GIIRS/FY-4A /
- ERA5 /
- 精度
Abstract: Based on the reanalysis data ERA5 from the European Centre for Medium-Range Weather Forecasts, the accuracy of the temperature profile retrieved from GIIRS/FY-4A in the East China Sea and South China Sea in the high-incidence period of typhoon in China is studied. The results show that: (1) In the East China Sea under clear sky, the overall RMSE of GIIRS quality control 0 data is 1.71 K, the RMSE is less than 1 K for the range of 150—450 hPa and the RMSE from 450 hPa to the near sea surface is within 2 K; the data inversion accuracy of quality control 1 is low and the error increases with height. Under cloudy sky, the overall RMSE of the retrieved data for quality control 0 and 1 is 4.72 K and 5.55 K, respectively. (2) In the South China Sea under clear sky, the overall RMSE of quality control 0 data is 1.67 K, the RMSE is less than 1 K for the range of 150—800 hPa, and the inversion accuracy is higher than that in the East China Sea; the RMSE of quality control 1 data is 5.07 K. Under cloudy sky, the RMSE of the data for quality control 0 and 1 is 6.68 K and 7.56 K, respectively. (3) As the level of Typhoon Lekima is strengthened to the maximum level (offshore development stage), the amount of retrieved data with high GIIRS credibility shows a reducing trend. There are many uncertainties in the retrieval of the thermal structure around the typhoon and thus other information is needed for verification.-
Key words:
- temperature profile /
- GIIRS/FY-4A /
- ERA5 /
- high-incidence period of typhoon
-
图 6 同图 4,但为南海海区
-
[1] 王颖, 黄勇, 黄思源. 大气温湿度廓线反演问题的研究[J]. 国土资源遥感, 2008, (1): 23-26. [2] 罗双, 尹球. 全球大气温度廓线的统计特性分析[J]. 热带气象学报, 2019, 35(4): 56-566. [3] 付驹. 台风登陆前后温度场垂直结构诊断研究[D]. 杭州: 浙江大学, 2009. [4] 周爱明. 基于风云四号高光谱红外模拟资料反演大气温度廓线试验研究[D]. 南京: 南京信息工程大学, 2017. [5] 尹若莹, 韩威, 高志球, 等. 基于FY-4A卫星探测区域模式背景误差和观测误差估计的长波红外通道选择研究[J]. 气象学报, 2019, 77 (5): 898-910. [6] 华建文, 毛建华. "风云四号" 气象卫星大气垂直探测仪[J]. 科学, 2018, 70(1): 24-29+63+24. [7] HUA J W, WANG Z H, DUAN J, et al. Review of geostationary interferometric infrared sounder[J]. Chinese Optics Letters, 2018, 16(11): 51-61. [8] 鲍艳松, 汪自军, 陈强, 等. FY-4A星GⅡRS大气温度廓线反演模拟试验研究[J]. 上海航天, 2017, 34(4): 28-37. [9] HE M, WANG D, DING W, et al. A validation of Fengyun4A temperature and humidity profile products by radiosonde observations[J]. Remote Sensing, 2019, 11(17): 2039. [10] 黄艺伟, 刘琼, 何敏, 等. 基于探空资料的上海台风季GⅡRS/FY-4A卫星温度廓线反演精度研究[J]. 红外, 2019, 40(9): 28-38. [11] 何兴伟, 冯小虎, 韩琦, 等. 世界各国静止气象卫星发展综述[J]. 气象科技进展, 2020, 10(1): 22-29+41. [12] 风云四号干涉式大气垂直探测仪在台风监测中发挥重要作用[J]. 红外, 2018, 39(8): 50. [13] 陈仁, 高聪, 吴晓唯, 等. 风云四号大气垂直探测仪在气象预报中应用(英文)[J]. 红外与毫米波学报, 2019, 38(3): 285-289. [14] 冯绚, 李利兵, 陈博洋, 等. 风云四号A星干涉式大气垂直探测仪在轨定标及性能评价[J]. 红外与毫米波学报, 2019, 38(5): 648-654. [15] 罗双, 狄迪, 崔林丽. 基于信息容量的FY-4A/GⅡRS红外光谱探测能力研究[J]. 红外与毫米波学报, 2019, 38(6): 765-776. [16] DI D, LI J, HAN W, et al. Enhancing the fast radiative transfer model for FengYun‐4 GⅡRS by using local training profiles[J]. J Geophy Res: Atmospheres, 2018, 123(22): 12 583-12 596. [17] 杨雨晗. FY-4A大气垂直探测仪(GⅡRS) 温度探测通道优选[D]. 上海: 华东师范大学, 2018. [18] 孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估[J]. 海洋气象学报, 2018, 38(1): 91-99. [19] JU J P, XIE A H, QIN X, et al. An assessment of ERA5 reanalysis for Antarctic near-surface air temperature[J]. Atmosphere, 2021, 12(2): 217. [20] 张永林, 蔡昌盛. 基于再分析资料ERA5的对流层延迟估计方法及精度评估[J]. 大地测量与地球动力学, 2020, 40(1): 62-65. [21] GRAHAM R M, HUDSON S R, MATURILLI M. Improved performance of ERA5 in Arctic Gateway relative to four global atmospheric Reanalyses[J]. Geophysical Research Letters, 2019, 46(11): 6 138-6 147. [22] MIGUEL N. Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences[J]. Journal of Hydrology, 2020, 583. [23] HERSBACH H, BELL B, BERRISFORD P. et al. The ERA5 global reanalysis[J]. Quart J Roy Meteor Soc, 2020, 146(730): 1 999-2 019. [24] 朱江萍, 谢爱红, 丁明虎, 等. 中国再分析资料气温在东南极中山站—Dome A断面的适用性分析[J]. 冰川冻土, 2020, 42(4): 1 145- 1 157. [25] ZHENG Y P. A preliminary analysis on the applicability of ERA5 reanalysis data in Guangdong Province[J]. Meteorological and Environmental Research, 2020, 11(02): 37-42+48. [26] 张志清, 陆风, 方翔, 等. FY-4卫星应用和发展[J]. 上海航天, 2017, 34(04): 8-19. [27] 马玉芬, 潘红林, 张海亮, 等. 大气红外探测器(AIRS)资料在塔克拉玛干沙漠的适用性检验与评估[J]. 干旱区地理, 2018, 41(5): 908- 922. [28] 郭世昌, 汪明圣, 黎成超, 等. 东亚地区平流层臭氧变化特征及其与温度场的相关分析[J]. 云南大学学报(自然科学版), 2013, 35(5): 644-651. [29] 马鹏飞, 陈良富, 邹铭敏, 等. 温度对CrIS热红外卫星资料反演臭氧廓线的影响分析[J]. 光谱学与光谱分析, 2015, 35(12): 3 344-3 349. [30] 黄荣辉, 陈文, 魏科, 等. 平流层大气动力学及其与对流层大气相互作用的研究: 进展与问题[J]. 大气科学, 2018, 42(3): 463-487. [31] 环保部: 全国近岸海域水质总体一般东海水质极差[J]. 环境, 2014(7): 72. [32] 霍云龙. 我国近海主要环境问题研究[D]. 厦门: 国家海洋局第三海洋研究所, 2011. [33] 方宏达, 陈锦芳, 段金明, 等. 中国近岸海域海水水质及海水淡化利用的研究进展[J]. 工业水处理, 2015, 35(4): 5-10. [34] 李俊, 曾庆存. 有云时大气红外遥感及其反演问题──Ⅰ. 理论研究[J]. 大气科学, 1997卷号(3): 86-92. [35] 赵慧洁, 米致远, 马晓航, 等. 基于红外光谱的大气温湿度反演研究进展[J]. 大气与环境光学学报, 2020, 15(2): 81-89. [36] 吴晓, 姚志刚, 韩志刚, 等. 利用IASI资料反演平流层大气温度[J]. 红外, 2016, 37(4): 11-17. [37] 官元红, 任杰, 鲍艳松, 等. 基于一维变分算法的红外高光谱(IASI)卫星遥感大气温湿廓线研究[J]. 大气科学学报, 2019, 42(4): 602-611. [38] NEHRIR A R, KIEMLE C, LEBSOCK M D, et al. Emering technolgies and synergies for airborne and space-based measurements of water vapor profiles[J]. Surveys in Geophysics, 2017, 38(6): 1 445-1 428. [39] CAI X, BAO Y S, GEORGE P P, et al. Temperature and humidity profile Retrieval from FY4-GⅡRS hyperspectral data using artificial neural networks[J]. Remote Sensing, 2020, 12(11): 1 872.