ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2019年马六甲地区红色精灵观测及母体雷暴分析

王庸平 陆高鹏 彭康铭 程征伟 王荣江 AHMADMohd Riduan 马明 郑建秋

王庸平, 陆高鹏, 彭康铭, 程征伟, 王荣江, AHMADMohd Riduan, 马明, 郑建秋. 2019年马六甲地区红色精灵观测及母体雷暴分析[J]. 热带气象学报, 2021, 37(3): 370-380. doi: 10.16032/j.issn.1004-4965.2021.036
引用本文: 王庸平, 陆高鹏, 彭康铭, 程征伟, 王荣江, AHMADMohd Riduan, 马明, 郑建秋. 2019年马六甲地区红色精灵观测及母体雷暴分析[J]. 热带气象学报, 2021, 37(3): 370-380. doi: 10.16032/j.issn.1004-4965.2021.036
WANG Yong-ping, LU Gao-peng, PENG Kang-ming, CHENG Zheng-wei, WANG Rong-jiang, AHMAD Mohd Riduan, MA Ming, ZHENG Jian-qiu. OBSERVATIONS OF RED SPRITES IN MALACCA AREA IN 2019 AND ANALYSES OF PARENT THUNDERSTORMS[J]. Journal of Tropical Meteorology, 2021, 37(3): 370-380. doi: 10.16032/j.issn.1004-4965.2021.036
Citation: WANG Yong-ping, LU Gao-peng, PENG Kang-ming, CHENG Zheng-wei, WANG Rong-jiang, AHMAD Mohd Riduan, MA Ming, ZHENG Jian-qiu. OBSERVATIONS OF RED SPRITES IN MALACCA AREA IN 2019 AND ANALYSES OF PARENT THUNDERSTORMS[J]. Journal of Tropical Meteorology, 2021, 37(3): 370-380. doi: 10.16032/j.issn.1004-4965.2021.036

2019年马六甲地区红色精灵观测及母体雷暴分析

doi: 10.16032/j.issn.1004-4965.2021.036
基金项目: 

国家重点研发计划项目 2019YFC1510103

国家自然科学基金 41875006

国家自然科学卫星联合基金项目“基于硬X射线调制望远镜(HXMT)的地球伽玛闪母体闪电及雷暴特征研究” U1938115

中国科学院稳定支持基础研究领域青年团队计划“南海上空中高层大气与电离层环境变化特征的基础与应用研究” YSBR-018

详细信息
    通讯作者:

    陆高鹏, 男, 江苏省人, 博士, 教授, 主要从事雷电物理学、大气和空间电学、灾害性天气和雷电防护、雷电探测的气象和工程应用研究。E-mail: gaopenglu@gmail.com

  • 中图分类号: P427.3

OBSERVATIONS OF RED SPRITES IN MALACCA AREA IN 2019 AND ANALYSES OF PARENT THUNDERSTORMS

  • 摘要: 红色精灵是一种发生于闪电放电活跃的雷暴云上空的中高层大气瞬态发光现象, 它们通常由中尺度对流系统层状云降水区内的强地闪回击产生, 是对流层和中间层之间的一种能量耦合过程。目前, 有关中国南海及东南亚地区的红色精灵观测鲜有报道。为了进一步了解热带地区产生红色精灵事件的沿海性雷暴特征, 于2019年利用低光度光学观测系统和低频磁场天线在马来西亚马六甲地区开展了地基观测。实验于11月9日、12月11日和12月15日三次在沿海雷暴上空共捕捉到7例红色精灵事件, 其中包括4例圆柱型、2例胡萝卜型和1例舞蹈型。结合闪电定位、云顶亮温和低频磁场信号等同步数据, 分析表明所有事件均由正极性地闪回击产生, 且母体闪电回击位于雷暴对流区附近(云顶亮温≤210 K处), 这可能是该地区产生红色精灵的沿海性雷暴的共同特征。此外, 红色精灵生成期并不是闪电活动最强期, 而是发生于闪电频数短暂降低后, 这表明红色精灵的发生可能是该地区成熟雷暴中对流减弱的一个信号。

     

  • 图  1  马六甲站示意图(a), 2019年11月9日(b)、12月11日(c)、12月15日(d)发生红色精灵的日闪电回击数量变化

    a中彩色菱形表示母体闪电,红色为2019年11月9日、黄色为2019年12月11日和蓝色为2019年12月15日,绿色圆形和紫色矩形分别表示马六甲测站和探空测站,圆形虚线为距测站距离(300 km和500 km)。紫色加号表示ISUAL在马来半岛附近所观测到红色精灵事件的地理分布。b~d分别为2019年11月9日、2019年12月11日、2019年12月15日发生红色精灵的日闪电回击数量变化。

    图  2  红色精灵静态图像

    a、b、i为胡萝卜型红色精灵;c、g、h为圆柱型红色精灵;d、e为舞蹈型红色精灵;f为d和e的合成图像。

    图  3  a、c为2019年11月9日马六甲站获得LF磁场信号波形;b、d为2019年11月9日发生红色精灵静态图像;e为探空站大气廓线;f为2019年11月9日17:00 UTC云顶亮温及WWLLN探测闪电分布(以红色精灵事件时间为中心时间,前后增加20 min)和18:00时风场数据。

    红色菱形、绿色圆形和紫色矩形分别表示母体闪电、马六甲测站和探空测站,圆形虚线为距测站距离(500 km)。

    图  4  a、c、e、g为2019年12月11日马六甲站获得LF磁场信号波形;b、d、f、h为2019年12月11日发生红色精灵静态图像;i为探空站大气廓线;j为2019年12月11日12:00 UTC云顶亮温及WWLLN探测闪电分布(以红色精灵事件时间为中心时间,前后增加10 min)和12:00 UTC风场数据。

    红色菱形、绿色圆形和紫色矩形分别表示母体闪电、马六甲测站和探空测站,圆形虚线为距测站距离(500 km)。

    图  5  a为探空站大气廓线, 插图为2019年12月15日发生红色精灵静态图像;b为2019年12月15日17:00 UTC云顶亮温及WWLLN探测闪电分布(以红色精灵事件时间为中心时间,前后增加10 min)和18:00 UTC风场数据。

    红色菱形、绿色圆形和紫色矩形分别表示母体闪电、马六甲测站和探空测站,圆形虚线为距测站距离(500 km)。

    表  1  2019年马六甲站的红色精灵观测

    Number Date Time (UTC) Longitude Latitude Event type Storm type Distance to the station (km) Polarity
    event-1 2019/11/09 16:58:06.411 102.220 °E 0.481 °N carrot MCS 203 positive
    event-2 2019/11/09 17:22:53.502 102.351 °E 0.127 °N carrot MCS 242 positive
    event-3 2019/12/11 11:45:55.372 100.815 °E 3.775 °N column supercell 233 positive
    event-4 2019/12/11 12:00:40.659 100.821 °E 3.838 °N dancing supercell 238 positive
    event-5 2019/12/11 12:05:57.887 100.704 °E 3.752 °N column supercell 241 positive
    event-6 2019/12/11 12:09:53.719 100.749 °E 3.793 °N column supercell 240 positive
    event-7 2019/12/15 17:06:22.534 104.395 °E 2.673 °N carrot MCS 234 positive (GLD360)
    下载: 导出CSV
  • [1] SENTMAN D D, WESCOTT E M, OSBORNE D L, et al. Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites[J]. Geophys Res Letters, 1995, 22(10): 1 205-1 208.
    [2] STANLEY M, KREHBIEL P, BROOK M, et al. High speed video of initial sprite development[J]. Geophys Res Letters, 1999, 26(20): 3 201-3 204.
    [3] PASKO V P, INAN U S, BELL TF, et al. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere[J]. J Geophys Res: Space Physics, 1997, 102(A3): 4 529-4 561.
    [4] SENTMAN D D, WESCOTT E M, PICARD R H, et al. Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(5): 537-550.
    [5] LIU N, DWYER J R, STENBAEK-NIELSEN H C, et al. Sprite streamer initiation from natural mesospheric structures[J]. Nature Communications, 2015, 6(1): 7 540.
    [6] SÃO SABBAS F T, SENTMAN D D, WESCOTT E M, et al. Statistical analysis of space-time relationships between sprites and lightning[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(5): 525-535.
    [7] LU G, CUMMER S A, LI J, et al. Coordinated observations of sprites and in-cloud lightning flash structure[J]. J Geophys Res: Atmos, 2013, 118(12): 6 607-6 632.
    [8] SOULA S, DEFER E, FÜLLEKRUG M, et al. Time and space correlation between sprites and their parent lightning flashes for a thunderstorm observed during the HyMeX campaign[J]. J Geophys Res: Atmos, 2015, 120(22): 11 552-11 574.
    [9] BOCCIPPIO D J, WILLIAMS E R, HECKMAN S J, et al. Sprites, ELF Transients, and Positive Ground Strokes[J]. Science, 1995, 269(5227): 1 088-1 091.
    [10] LYONS W A. Sprite observations above the U. S. High Plains in relation to their parent thunderstorm systems[J]. J Geophys Res: Atmos, 1996, 101(D23): 29 641-29 652.
    [11] LYONS W A, NELSON T E, WILLIAMS E R, et al. Characteristics of sprite-producing positive cloud-to-ground lightning during the 19July 2000 STEPS mesoscale convective systems[J]. Mon Wea Rev, 2003, 131(10): 2 417-2 427.
    [12] LYONS W A. The meteorology of transient luminous events-an introduction and overview[M]. Dordrecht: Springer Netherlands, 2006: 19-56.
    [13] SOULA S, VAN DER VELDE O, MONTANYÀJ, et al. Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies[J]. Atmos Res, 2009, 91(2): 514-528.
    [14] HUANG E, WILLIAMS E, BOLDI R, et al. Criteria for sprites and elves based on Schumann resonance observations[J]. J Geophys Res: Atmos, 1999, 104(D14): 16 943-16 964.
    [15] HU W, CUMMER SA, LYONS WA, et al. Lightning charge moment changes for the initiation of sprites[J]. Geophys Res Lett, 2002, 29(8): 120-1-120-4.
    [16] CUMMER S A, LYONS W A. Implications of lightning charge moment changes for sprite initiation[J]. Geophys Res Lett, 2005, 110(A4).
    [17] HIRAKI Y, FUKUNISHI H. Theoretical criterion of charge moment change by lightning for initiation of sprites[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A11).
    [18] QIN J, CELESTIN S, PASKO V P. Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites[J]. Geophy Res Lett, 2012, 39(22).
    [19] LU G, CUMMER S A, LI J, et al. Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system[J]. Geophy Res Lett, 2009, 36(15).
    [20] LANG T J, LYONS W A, RUTLEDGE S A, et al. Transient luminous events above two mesoscale convective systems: Storm structure and evolution[J]. Geophys Res Lett, 2010, 115(A5).
    [21] VAN DER VELDE O A, MONTANYÀJ, SOULA S, et al. Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-to-ground flashes in northeastern Spain[J]. Geophys Res Lett, 2010, 115(A9).
    [22] VAN DER VELDE O A, MONTANYÀJ, SOULA S, et al. Bidirectional leader development in sprite-producing positive cloud-to-ground flashes: Origins and characteristics of positive and negative leaders[J]. Geophys Res Lett, 2014, 119(22): 12 755-12 779.
    [23] YANG J, LIU N, SATO M, et al. Characteristics of Thunderstorm Structure and Lightning Activity Causing Negative and Positive Sprites[J]. Geophys Res Lett, 2018, 123(15): 8 190-8 207.
    [24] HARDMAN S F, DOWDEN R L, BRUNDELL J B, et al. Sprite observations in the Northern Territory of Australia[J]. J Geophy Res: Atmos, 2000, 105(D4): 4 689-4 697.
    [25] YANG J, LU, G LIU N, et al. Sprite possibly produced by two distinct positive cloud-to-ground lightning flashes[J]. Terr Atmos Ocean Sci, 2017, 28(4).
    [26] CHERN J L, HSU R R, SU H T, et al. Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(5): 647-659.
    [27] CHEN A B, KUO C L, LEE Y J, et al. Global distributions and occurrence rates of transient luminous events[J]. Geophys Res Lett, 2008, 113(A8).
    [28] CHEN A B, CHEN H, CHUANG C W, et al. On negative Sprites and the Polarity Paradox[J]. Geophysical Research Letters, 2019, 46(16): 9, 370-9, 378.
    [29] CHERN R J S, LIN S F, WU A M. Ten-year transient luminous events and Earth observations of FORMOSAT-2[J]. Acta Astronautica, 2015, 112: 37-47.
    [30] LU G, CUMMER S A, CHEN A B, et al. Analysis of lightning strokes associated with sprites observed by ISUAL in the vicinity of North America[J]. Terr Atmos Ocean Sci, 2017, 28(4): 583-595.
    [31] SAID R K, COHEN M B, INAN U S. Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations[J]. Geophys Res Lett, 2013, 118(13): 6 905-6 915.
    [32] FREY H U, MENDE S B, HARRIS S E, et al. The Imager for Sprites and Upper Atmospheric Lightning(ISUAL)[J]. Geophys Res Lett, 2016, 121(8): 8 134-8 145.
    [33] ABARCA S F, CORBOSIERO K L, GALARNEAU JR T J. An evaluation of the Worldwide Lightning Location Network(WWLLN)using the National Lightning Detection Network(NLDN)as ground truth[J]. Geophys Res Lett, 2010, 115(D18).
    [34] LYONS W A, CUMMER S A, STANLEY MA, et al. Supercells and sprites[J]. Bull Ameri Meteor Soci, 2008, 89(8): 1 165-1 174.
    [35] 王志超, 杨静, 陆高鹏, 等. 华北地区一次中尺度对流系统上方的sprite放电现象及其对应的雷达回波和闪电特征[J]. 大气科学, 2015, 39(4): 839-848.
    [36] YANG J, YANG M, LIU C, et al. Case studies of sprite-producing and non-sprite-producing summer thunderstorms[J]. Adv Atmos Sci, 2013, 30(6): 1 786-1 808.
    [37] YANG J, LU G, LIU N, et al. Analysis of a mesoscale convective system that produced a single sprite[J]. Adv Atmos Sci, 2017, 34(2): 258-271.
    [38] WESCOTT E M, SENTMAN D D, HEAVNER M J, et al. Observations of'Columniform'sprites[J]. Journal of Atmospheric and Solar Terrestrial Physics, 1998, 60(7): 733-740.
    [39] BARRINGTON-LEIGH C P, INAN U S, STANLEY M. Identification of sprites and elves with intensified video and broadband array photometry[J]. J Geophy Res: Space Physics, 2001, 106(A2): 1 741-1 750.
    [40] QIN J, CELESTIN S, PASKO V P. On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity[J]. J Geophy Res: Space Physics, 2011, 116(A6).
    [41] TAKAHASHI Y, MIYASATO R, ADACHI T, et al. Activities of sprites and elves in the winter season, Japan[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(5): 551-560.
    [42] SUZUKI T, MATSUDO Y, ASANO T, et al. Meteorological and electrical aspects of several winter thunderstorms with sprites in the Hokuriku area of Japan[J]. J Geophy Res: Atmos, 2011, 116(D6).
    [43] WESCOTT E M, STENBAEK-NIELSEN H C, SENTMAN D D, et al. Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors[J]. Geophys Res Lett, 2001, 106(A6): 10 467-10 477.
    [44] LANG T J, CUMMER S A, RUTLEDGE S A, et al. The meteorology of negative cloud-to-ground lightning strokes with large charge moment changes: Implications for negative sprites[J]. J Geophy Res: Atmospheres, 2013, 118(14): 7, 886-7, 896.
    [45] BOGGS L D, LIU N, SPLITT M, et al. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures[J]. J Geophy Res: Atmos, 2016, 121(2): 759-784.
    [46] LANG T J, LYONS W A, CUMMER S A, et al. Observations of two sprite-producing storms in Colorado[J]. J Geophys Res: Atmos, 2016, 121(16): 9, 675-9, 695.
    [47] WILLIAMS E, MUSHTAK V, ROSENFELD D, et al. Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate[J]. Atmos Res, 2005, 76(1): 288-306.
    [48] FUCHS B R, RUTLEDGE S A, BRUNING E C, et al. Environmental controls on storm intensity and charge structure in multiple regions of the continental United States[J]. J Geophy Res: Atmos, 2015, 120(13): 6 575-6 596.
    [49] LANG T J, RUTLEDGE S A. A framework for the statistical analysis of large radar and lightning datasets: results from STEPS 2000[J]. Mon Wea Rev, 2011, 139(8): 2 536-2 551.
    [50] SAUNDERS C P R, PECK S L. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions[J]. J Geophy Res: Atmospheres, 1998, 103(D12): 13 949-13 956.
    [51] BRUNING E C, WEISS S A, CALHOUN K M. Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology[J]. Atmos Res, 2014, 135-136: 274-284.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  15
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2021-01-19
  • 网络出版日期:  2021-09-27
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回