ANALYSIS OF THE INFLUENCE OF PRECIPITATION AND TEMPERATURE ON GROUNDING RESISTANCE
-
摘要: 通过对3种接地装置接地电阻的持续观测, 分析了降水、温度对接地电阻的影响, 结果发现: 接地电阻具有明显的季节变化特征, 汛期(4—9月)降水量增加, 温度也逐渐升高, 接地电阻呈现下降趋势, 在9月之后, 随着降水的减少及温度的下降, 接地电阻逐渐升高, 此过程一直持续到翌年的2月; 接地电阻的变化率与接地体类型及尺寸大小密切相关; 降水量 < 20 mm的降水过程对接地电阻的影响较小; 当降水量偏多, 土壤含水量处于较高水平时, 多余的降水并不会使接地电阻出现明显的下降, 此时期温度对接地电阻的下降起着关键作用; 当长期干旱时, 土壤含水量偏低, 此时期较强的降水会引起接地电阻出现明显的下降, 而温度的影响相对不明显。Abstract: By continuously observing the grounding resistance of three types of grounding devices and analyzing the influence of precipitation and temperature on grounding resistance, we find that grounding resistance has obvious seasonal variation. Both precipitation and temperature increase during the rainy season(April to September), and thus the ground resistance shows a downward trend. After September, as precipitation decreases and temperature drops, ground resistance gradually increases. This process continues until February of the following year. The change rate of ground resistance is closely related to the type and size of grounding device. The influence of precipitation on ground resistance is small when the precipitation is less than 20 mm. When the precipitation is too high and the soil moisture content is at a high level, excess precipitation will not cause a significant drop in grounding resistance. During this period, temperature plays a key role in the decline of grounding resistance. During a prolonged drought, the soil moisture content is low. The precipitation in this period will cause a significant drop in grounding resistance, while the effect of temperature is relatively insignificant.
-
Key words:
- precipitation /
- temperature /
- grounding device /
- ground resistance /
- seasonal variation
-
表 1 接地电阻月变化对比表
接地体 月变化范围/Ω 平均值/Ω 变化绝对值/Ω 变化率 S1 0.57~0.77 0.67 0.20 0.26 S2 5.11~8.43 6.77 3.32 0.39 S3 22.77~52.26 37.30 29.49 0.56 -
[1] 李景禄, 李卫国. 关于大中型接地网降阻措施的经验[J]. 高电压技术, 2002, 28(9): 55-56. [2] 李景禄, 郑瑞臣. 关于接地工程中若干问题的分析和探讨[J]. 高电压技术, 2006, 32(6): 122-124. [3] 张波, 何金良, 曾嵘. 电力系统接地技术现状及展望[J]. 高电压技术, 2015, 41(8): 2 569-2 582. [4] 颜旭, 揣国权, 王孝波, 等. 1次触发闪电引起的地网地电位抬升观测及分析[J]. 高电压技术, 2020, 46(12): 4 120-4 128. [5] 易燕明, 杨兆礼, 万齐林, 等. 近50年广东省雷暴、闪电时空变化特征的研究[J]. 热带气象学报, 2006, 22(6): 539-546. [6] 殷娴, 胡颖, 尹丽云. 低纬高原地区短时强降水与雷电活动相关性研究[J]. 热带气象学报, 2021, 37(1): 25-33. [7] 周永水, 原野, 万雪丽. 复杂山地环境下雷暴天气中地基微波辐射计影响距离分析[J]. 热带气象学报, 2020, 36(2): 199-207. [8] 甘明骏, 郭凤霞, 黎奇, 等. 广东一次飑线过程中一个雷暴单体成熟阶段的电荷结构演变特征的数值模拟[J]. 热带气象学报, 2020, 36(4): 562-576. [9] 曹晓斌, 吴广宁, 付龙海, 等. 温度对土壤电阻率影响的研究[J]. 电工技术学报, 2007, 22(9): 1-6. [10] 周密, 王建国, 范璇, 等. 珠三角地区的土壤电阻率温度修正模型[J]. 高电压技术, 2012, 38(3): 623-630. [11] 刘春泉, 厚军学, 张伟. 宁夏土壤电阻率时空分布观测试验[J]. 气象科技, 2008, 36(4): 474-479. [12] 揣国权, 黄振航, 宫奇伟, 等. 土壤电阻率季节变化与气象因素关系分析[J]. 气象减灾与研究, 2020, 43(1): 67-72. [13] 王孝波, 曾昌军, 邓春林, 等. 接地电阻随季节及天气过程变化规律分析[J]. 气象科学, 2013, 33(6): 648-652. [14] 霍广勇, 王红, 周雄伟, 等. 乌鲁木齐地区土壤温、湿度变化对接地电阻的影响[J]. 沙漠与绿洲气象, 2014, 8(6): 70-72. [15] 吴田, 刘凯, 黄金领, 等. 500 kV输电线路杆塔接地电阻季节变化特性测量与分析[J]. 电力科学与技术学报, 2014, 29(1): 65-69.