ANALYSIS OF LIGHTNING CHARACTERISTICS AND THEIR RELATIONSHIP WITH METEOROLOGICAL PARAMETERS IN ZHEJIANG AND ITS SURROUNDING AREAS BASED ON TRMM/LIS DATA
-
摘要: 利用TRMM/LIS 0.1°超高分辨率闪电定位产品, 分析了浙江省及周边地区(117.5~123.0°E, 26~32°N)卫星闪电资料的时空分布特点; 并结合中国区域地面气象要素驱动数据集、亚洲大陆气溶胶光学厚度数据集, 分析了该区域闪电与气象要素的关系。结果表明: 研究区域内闪电平均密度为5.97 f1/(km2·a), 其中陆地闪电平均密度为7.94 f1/(km2·a), 海洋闪电平均密度为2.09 f1/(km2·a), 陆地闪电平均密度为海洋闪电平均密度的3.80倍; 平均闪电密度值逐月变化特征在陆地和海洋区域有很好的一致性, 夏季闪电密度最大, 冬季闪电密度值最小; 陆地闪电密度日变化呈现单峰结构, 海洋闪电密度日变化呈现双峰双谷波形。该区域陆地气温、地面辐射、比湿及降水率均与闪电密度的月变化成正相关, 其中地面降水率和闪电密度月变化相关系数最高, 为0.858 0;气溶胶光学厚度与闪电密度月变化呈现弱的负相关, 相关系数为-0.397 8。Abstract: The characteristics of spatial and temporal distribution of satellite lightning data in Zhejiang and its surrounding areas(117.5 ~ 123.0 ° E, 26 ~ 32 ° N) are analyzed based on the TRMM/LIS 0.1 Degree Very High Resolution Gridded Lightning Climatology Data Collection, and its relationship with meteorological parameters in this area are analyzed by combining the China Meteorological Forcing Dataset and SRAP AOD dataset of Asia. The result shows that the average lightning frequency in this area is 5.97 times/(km2· a). The average lightning frequency on land and ocean is 7.94 times/(km2· a) and 2.09 times/(km2· a) respectively, with the former 2.80 times higher than the latter. Monthly variation trends of the average lightning frequency on land and sea are quite consistent. The maximum lightning frequency is in summer and the minimum is in winter. Diurnal variation of lightning frequency on land presents a single oscillation with a peak and a trough, while lightning frequency over sea shows a double oscillation with two peaks and two troughs. The monthly variation of land temperature, surface radiation, specific humidity and precipitation rate are positively correlated with that of lightning frequency. The correlation coefficient between precipitation rate and lightning frequency is 0.858 0, which is the highest correlation coefficient between meteorological parameters and lightning frequency. The monthly variation of aerosol optical thickness has a weak negative correlation with lightning frequency, and the correlation coefficient is-0.397 8.
-
表 1 闪电密度与气象要素的相关系数
气象要素 相关系数 近地面气温 0.667 0 地面向下长波辐射 0.700 8 地面向下短波辐射 0.759 1 近地面空气比湿 0.710 1 地面降水率 0.858 0 气溶胶光学厚度 -0.397 8 -
[1] 王振会. TRMM卫星测雨雷达及其应用研究综述[J]. 气象科学, 2001, 21(4): 491-500. [2] ALBRECHT R I, GOODMAN S J, BUECHLER D E, et al. LIS 0.1 Degree Very High Resolution Gridded Lightning Climatology Data Collection[Z]. NASA Global Hydrology Resource Center DAAC, 2016. [3] BOCCIPPIO D J, GOODMAN S J, HECKMAN S. Regional differences in tropical lightning distributions[J]. J Appl Meteor, 2000, 39(12): 2 231-2 248. [4] 郄秀书, 周筠珺, 袁铁, 等. 卫星观测到的全球闪电活动及其地域差异[J]. 地球物理学报, 2003, 46(7): 743-750. [5] 郄秀书, RALF T. 卫星观测到的青藏高原雷电活动特征[J]. 高原气象, 2003, 22(3): 288-294. [6] 戴建华, 秦虹, 郑杰. 用TRMM/LIS资料分析长江三角洲地区的闪电活动[J]. 应用气象学报, 2005, 16(6): 728-735. [7] 王义耕, 陈渭民, 刘洁. TRMM卫星观测到的华南地区的闪电时空分布特征[J]. 热带气象学报, 2009, 25(2): 227-233. [8] 王义耕, 刘洁, 王介君, 等. 卫星观测的西南地区闪电的时空分布[J]. 大气科学学报, 2010, 33(4): 489-495. [9] 熊亚军, 郄秀书, 周筠珺, 等. 区域闪电活动对地面相对湿度的响应[J]. 地球物理学报, 2006, 49(2): 367-374. [10] 马明, 陶善昌, 祝宝友, 等. 全球闪电活动对气温变化的响应[J]. 科学通报, 2005, 50(15): 1 643-1 647. [11] 杜赛, 谭涌波, 汪然, 等. 中国不同地区闪电活动和气溶胶的相关性[J]. 科学技术与工程, 2018, 18(6): 22-30. [12] DAI J H, WANG Y, CHEN L, et al. A comparison of lightning activity and convective indices over some monsoon-prone areas of China[J]. Atmos Res, 2009, 91: 438-452. [13] ALBRECHT R I, GOODMAN S J, BUECHLER D E, et al. Where are the lightning hotspots on earth?[J]. Bull Amer Meteor Soc, 2016, 97(11): 2 051-2 068. [14] CECIL D J, BUECHLER E B, RICHARD J B. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description[J]. Atmos Res, 2014, 135-136: 404-414. [15] 阳坤, 何杰. 中国区域地面气象要素驱动数据集(1979-2018)[Z]. 时空三极环境大数据平台, 2019. [16] HE J, YANG K, TANG W, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7: 25. [17] YANG K, HE J, TANG W J, et al. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2010, 150(1): 38-46. [18] 光洁, 薛勇. 亚洲大陆气溶胶光学厚度数据集(2002-2011)[Z]. 时空三极环境大数据平台, 2018. [19] XUE Y, HE X W, XU H, et al. China Collection 2.0: The Aerosol Optical Depth Dataset from the Synergetic Retrieval of Aerosol Properties Algorithm[J]. Atmos Envir, 2014, 95(1): 45-58. [20] GUANG J, XUE Y, LI Y J, et al. Retrieval of Aerosol Optical Depth over Bright Land Surfaces by Coupling Bidirectional Reflectance Distribution Function Model and Aerosol Retrieval Model[J]. Remote Sensing Letter, 2012, 3(7): 577-584. [21] TANG J K, XUE Y, YU T, et al. Aerosol Optical Thickness Determination by Exploiting the Synergy of TERRA and AQUA MODIS(SYNTAM)[J]. Remote Sensing of Environment, 2005, 94(3): 327-334. [22] 王基鑫. 全球闪电活动时空分布特征及其与大气环境因素的关系[D]. 合肥: 中国科学技术大学, 2016. [23] YOU J, ZHENG D, ZHANG Y J, et al. Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observation[J]. Atmos Res, 2019, 223(1): 98-113. [24] CHRISTIAN H J, BLAKESLEE R J, BOCCIPPIO D J, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector[J]. J Geophys Res, 2003, 108(D1): 4 005. [25] 郭润霞, 王迎春, 张文龙, 等. 基于VLF/LF三维闪电监测定位系统的北京闪电特征分析[J]. 热带气象学报, 2018, 34(3): 393-400. [26] 宋敏敏, 郑永光. 我国中东部3—9月云地闪电密度和强度分布特征[J]. 热带气象学报, 2016, 32(3): 322-333. [27] MONTANYÀJ, FABRÓF, VAN DER VELDE O, et al. Global distribution of winter lightning: a threat to wind turbines and aircraft[J]. Natural Hazards and Earth System Science, 2016, 16: 1 465-1 472. [28] BAILEY J C, BLAKESLEE D E, CHRISTIAN H J. Diurnal lightning distributions as observed by the Optical Transient Detector(OTD)and the Lightning Imaging Sensor(LIS)[C]. Beijing: Proceedings of the 13th International Conference on Atmospheric Electricity, 2007: 657-660. [29] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法[M]. 北京: 气象出版社, 2003: 436-437, 442. [30] 彭丽春, 李万彪, 叶晶, 等. 地表向下短波和长波辐射遥感参数化方案研究综述[J]. 北京大学学报(自然科学版), 2005, 51(4): 772-782. [31] KUMAR P R. Lightning, rainfall, AOD, and convection variabilities in the monsoon zone of India[J]. International Journal of Remote Sensing, 2018, 39(3): 727-740. [32] 李春笋, 谭涌波, 师正, 等. 地面湿度对雷暴云电过程的影响[J]. 科学技术与工程, 2019, 19(25): 38-47. [33] 郭艳君, 丁一汇. 1958-2005年中国高空大气比湿变化[J]. 大气科学, 2014, 38(1): 1-12. [34] 郑栋. 闪电活动与降水的相关关系研究[D]. 北京: 中国科学研究生院, 2008. [35] 冯桂力, 郄秀书, 袁铁, 等. 雹暴的闪电活动特征与降水结构研究[J]. 中国科学: 地球科学, 2007, 37(1): 123-132. [36] DEIERLING W, LATHAM J, PETERSON W A, et al. On the relationship of thunderstorm ice hydrometeor characteristics and total lightning measurements[J]. Atmos Res, 2005, 76: 114-126. [37] 张祎, 王振会, 肖稳安. 南京对流降水和闪电的TRMM资料分析[J]. 气象科学, 2010, 30(4): 468-474. [38] 樊高峰, 何月, 顾骏强. 基于GIS的浙江省暴雨灾害及其危险性评价[J]. 中国农学通报, 2012, 28(32): 293-299. [39] 王颖, 刘丹妮, 张玮玮, 等. 2004-2016年浙江省夏季降水的日变化特征[J]. 干旱气象, 2019, 37(1): 1-9. [40] 杨宁, 张其林. 西太平洋台风最大风速与闪电活动特征[J]. 大气科学学报, 2012, 35(4): 415-422. [41] 眭敏, 刘宇迪, 杨桃进. 气溶胶对台风"天兔"中闪电的影响[J]. 热带气象学报, 2017, 33(5): 728-740. [42] KHAIN A, COHEN N, LYNN B, et al. Possible aerosol effects on lightning activity and structure of hurricanes[J]. J Atmos Sci, 2008, 65(12): 3 652-3 667. [43] ANDREAE M O, JONES C D, COX P M. Strong present-day aerosol cooling implies a hot future[J]. Nature, 2005, 435(7 046): 1 187-1191. [44] TAN Y B, PENG L, SHI Z, et al. Lightning flash density in relation to aerosol over Nanjing(China)[J]. Atmos Res, 2016, 174-175: 1-8. [45] ZHAO P G, LI Z Q, XIAO H, et al. Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China[J]. Atmos Chem Phys, 2020, 20: 13 379-13 397. [46] SHI Z, WANG H C, TAN Y B, et al. Influence of aerosols on lightning activities in central eastern parts of China[J]. Atmos Sci Lett, 2020, 21: e957. [47] WILLIAMS E, STANLL S. The physical origin of the land-ocean contrast in lightning activity[J]. Comptes Rendus Physique, 2002, 3(10): 1 277-1 292. [48] 宋晓爽, 郑栋, 张义军, 等. 上海及周边地区地闪活动特征及海陆差异[J]. 气象科技, 2014, 42(1): 164-172. -