MICROPHYSICAL STRUCTURE OF PRECIPITATION INDUCED BY WEAK TYPHOON FROM THE SOUTH CHINA SEA BASED ON DUAL POLARIZATION RADAR DATA
-
摘要: 有些南海弱台风在登陆广东时,由于路径复杂、移动缓慢,会对广东地区造成较长时间和较大范围的风雨灾害。使用双偏振雷达对2018—2020年登陆广东的南海弱台风分析,发现南海弱台风在登陆前强降水区主要有两个:一个是位于海上的台风中心南侧眼墙的降水区,另外一个是在台风移动方向的右前方,台风螺旋雨带上岸的区域。在眼墙中,ZH和KDP的大值区在低层同位相,ZDR大值区位于偏上风方向,降水粒子在移动的右侧开始激发,移动的右侧至右前侧为浓度较大的小粒子降水,而右侧和右后侧为大粒子降水。而且台风降水粒子在海洋和陆地有明显差异,陆地由于地形摩擦和抬升作用,降水粒子浓度较大,但水汽和能量供应不足,降水粒子直径较小;海面由于水汽和能量供应充足,对流发展较高,主要为大雨滴的对流降水,但降水粒子浓度不及陆地。Abstract: When some weak typhoons from the South China Sea land in Guangdong, they cause long-term and large-scale wind and rain disasters to the local area due to their complicated paths and slow movement. This paper uses dual polarization radar data to analyze the microphysical structure of precipitation induced by weak typhoons that came from the South China Sea and landed in Guangdong during 2018—2020. It is found that there were two main areas of strong precipitation before the landing of weak typhoons from the South China Sea. One, on the sea and south to the typhoon center, was the precipitation area of the typhoon eye wall and the other, on the right front of the typhoon's moving direction, was located in the region where the spiral rain bands landed. In the eye wall, the large value areas of horizontal reflectivity (ZH) and differential propagation phase shift (KDP) were in the same phase in the lower levels, and the large value areas of differential reflectivity (ZDR) were located in the upwind direction. The precipitation particles started to be excited on the right side of the movement. The large concentration of small precipitation particles was distributed from the right side to the right front of the movement, while large-particle precipitation appeared on the right side and in the rear right region. In addition, typhoon precipitation particles were significantly different when they were over the ocean and the land. Due to terrain friction and uplift, the concentration of precipitation particles over the land was relatively large, but the water vapor and energy supply was insufficient, and the diameter of precipitation particle was small. Nevertheless, the sea surface had sufficient water vapor and energy supply, and the convection height was relatively high. The precipitation over the ocean was mainly composed of convective precipitation of heavy raindrops, but the concentration of precipitation particles was lower than that of land.
-
图 8 热带气旋“艾云尼”的不同时间段沿图 3黑色实线的双偏振量剖面平均
黑色粗线表示海岸线位置(南侧是海上,北侧是陆地)。a、b、c分别表示6日08—15时、6日15时—7日00时、7日00—18时的反射率剖面平均(单位:dBZ);d、e、f分别表示6日08—15时、6日15时—7日00时、7日00—18时的差分相移率剖面平均(单位:°/km);g、h、i分别表示6日08—15时、6日15时—7日00时、7日00—18时的差分反射率剖面平均(单位:dB)。
图 11 沿图 9所示垂直海岸线的红色实线所做的反射率剖面平均(单位:dBZ,a、b、c),差分相移率剖面平均(单位:°/km,d、e、f),差分反射率剖面平均(单位:dB,g、h、i)
黑色粗线表示海岸线位置。a、d、g分别表示热带气旋“百里嘉”的各双偏振量剖面平均;b、e、h分别表示热带气旋“韦帕”的各双偏振量剖面平均;c、f、i分别表示热带气旋“海高斯”的各双偏振量剖面平均。
图 12 同图 11,对3个热带气旋沿红色实线所作各双偏振量剖面平均
表 1 热带气旋“艾云尼”第一次登陆后路径分类
编号 时间 方向 下垫面 1 6日08时—6日15时 偏南方向 陆地(经过琼州海峡) 2 6日15时—7日00时 偏东方向 陆地 3 7日00时—7日20时 偏北方向 海洋 -
[1] 徐圣璇, 张成扬, 陈丹. 登陆华南台风频次影响因子的气候模式预测能力研究[J]. 气象研究与应用, 2020, 41(3): 16-20. [2] 袁金南, 郑彬. 广东热带气旋及其降水的年际变化特征[J]. 自然灾害学报, 2008, 17(3): 140-147. [3] 黄燕燕, 薛纪善, 冯业荣, 等. 采用预报涡旋的初始化方案对2015 "莲花"、"灿鸿"的试验研究[J]. 热带气象学报, 2018, 34(5): 598-609. [4] 徐道生, 张邦林, 曾庆存, 等. 一种基于分析增量更新技术的台风初始化方案[J]. 气象学报, 2019, 77(6): 1 053-1 061. [5] 徐道生, 陈子通, 张艳霞, 等. 南海台风模式TRAMS 3.0的技术更新和效果评估[J]. 气象, 2020, 46(11): 1 474-1 484. [6] 张希帆, 黄菲, 许士斌, 等. 弱台风影响下中国大暴雨事件发生频次的统计特征[J]. 海洋气象学报, 2019, 39(3): 11-18. [7] HUANG Y, ZHENG B. Tropical cyclone structure in the South China Sea based on highresolution reanalysis data and comparison with that of'bogus'vortices[J]. Dynamics of Atmospheres and Oceans, 2020, 89: 101128, https://doi.org/10.1016/j.dynatmoce.2019.101128 [8] 叶家成, 杜新观, 余锦华. 影响中国大陆热带气旋路径分类及其特征研究[J]. 气象科学, 2019, 39(3): 304-311. [9] 林青. 华南登陆台风内核区降水非对称结构分析[D]. 南京: 南京大学, 2014. [10] 陈联寿, 丁一汇. 西北太平洋台风概论[M]. 北京: 科学出版社, 1979: 45-51. [11] 包澄澜. 热带天气学[M]. 北京: 科学出版社, 1980: 140-141. [12] KOSSIN J P, SITKOWSKI M. An objective model for identifying secondary eyewall formation in Hurricanes[J]. Mon Wea Rev, 2009, 137 (3): 866-892. [13] HAWKINS J D, HELVESTON M, LEE T F, et al. Tropical cyclone multiple eyewall configurations. Extended Abstracts[C]//27th Conf, . on Hurricanes and Tropical Meteorology, 2006, Monterey, CA, Amer Mereor Soc, 6B. 1. [14] KUO H C, CHANG C P, YANG Y T, et al. Western North Pacific typhoons with concentric eyewalls[J]. Mon Wea Rev, 2009, 137(11): 3 758-3 770. [15] 陈莲, 郑洋洋, 茅飘洋, 等. 台风"利奇马"(1909) 双眼墙结构的多源观测数据分析[J]. 气象科学, 2020, 40(3): 402-407. [16] 吴伯雄, 陈士仁. 台风结构的不对称性和切变线[J]. 南京大学学报, 1981(1): 119-134. [17] 韦有暹. 南海和西北太平洋的台风异常路径[J]. 热带海洋, 1984, 3(1): 28-39. [18] 林晓能, 宋萍. 盛夏南海台风的结构分析[J]. 海洋预报, 1992, 9(1): 41-46. [19] 吴迪生, 林晓能. 8616号(WAYNE)台风结构分析[J]. 南海研究与开发, 1989: 16-24. [20] SIMPSON R H. On the structure of tropical cyclones as studied by aircraft reconnaissance[C]//Proc. Unesco Symposium on Typhoons, Tokyo, The Japanese National Committee for UNESCO, 1955: 129-150. [21] HOUZERA, HOBBSPV. Organization and Structure of Precipitating Cloud Systems[J]. AdvancesinGeophysics, 1982, 24: 225-315. [22] ATKINSON B W. Meso-scale atmospheric circulations[M]. Academic Press, 1981: 450-463. [23] 冀春晓, 陈联寿, 徐祥德, 等. 多普勒雷达资料动态定量估测台风小时降水量的研究[J]. 热带气象学报, 2008, 24(2): 147-155. [24] 刘黎平, 曹俊武, 莫月琴, 等. 雷达遥感新技术及其在灾害性天气探测中的应用[J]. 热带气象学报, 2006, 22(1): 1-9. [25] BRINGI V N, CHANDRASEKAR V. Polarimetric Doppler weather radar: Principles and applications[M]. Cambridge: Cambridge University Press, 2001: 636. [26] STEINER M, HOUZE R A, YUTER S E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data[J]. J Appl Meteor, 1995, 34(9): 1978-2007. [27] HUANG H, ZHAO K, ZHANG G F, et al. Quantitative precipitation estimation with operational polarimetric radar measurements in Southern China: A differential phase-based variational approach[J]. Atmospheric Oceanic Technology, 2018, 35(6): 1 253-1 271. [28] KOSSIN J P, SITKOWSKI M. An objective model for identifying secondary eyewall formation in Hurricanes[J]. Mon Wea Rev, 2009, 137 (3): 866-892. [29] SHAPIRO L J. The asymmetric boundary layer flow under a translating hurricane[J]. J Atmos Sci, 1983, 40(8): 1 984-1 998. [30] WONG M L, CHAN J C. Tropical cyclone motion in response to land surface friction[J]. J Atmos Sci, 2006, 63(4): 1 324-1 337. [31] LONFAT M, MARKS F D, CHEN S Y S. Precipitation distribution intropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective[J]. Mon Wea Rev, 2004, 132(7): 1 645-1 660. [32] CHEN S Y S, Knaff J A, MARKS F D. Effects of vertical wind shear and storm otion on tropical cyclone rainfall asymmetries deduced from TRMM[J]. Mon Wea Rev, 2006, 134(11): 3 190-3 208. [33] 朱雪松, 余晖, 尹球, 等. 台风"梅花"(1109)双眼墙生消过程的卫星资料分析[J]. 热带气象学报, 2014, 30(1): 34-44. [34] 陈莲, 郑洋洋, 茅飘洋, 等. 台风"利奇马"(1909)双眼墙结构的多源观测数据分析[J]. 气象科学, 2020, 40(3): 402-407. [35] BRINGI V N, CHANDRASEKAR V, HUBBERT J, et al. Raindrop size distribution in di_erent climatic regimes from disdrometer and dualpolarized radar analysis[J]. J Atmos Sci, 2003, 60(2): 354-365. [36] TOKAY A, BASHOR P G, HABIB E, et al. Raindrop size distri-bution measurements in tropical cyclones[J]. Mon Wea Rev, 2008, 136(5): 1 669-1 685. [37] OUYANG P, WANG Y Q, ZHANG X N, et al. A Numerical study of mesoscale-topography influence on the heavy rainband of typhoon Hato (2017)[J]. J Trop Meteor, 2021, 27(4): 393-405, https://doi.org/10.46267/j.1006-8775.2021.034. [38] ZHONG S X, ZHUANG Y, HU S, et al. Verification and Assessment of real-time forecasts of two extreme heavy rain events in Zhengzhou by operational NWP models[J]. J Trop Meteor, 2021, 27(4): 406-417, https://doi.org/10.46267/j.1006-8775.2021.035