VERIFICATION OF GRID SUNNY/RAINY FORECAST IN HAINAN ISLAND BASED ON GRIDDED OBSERVATION DATA
-
摘要: 采用高分辨率的格点降水实况资料,对2019年5月1日—9月30日中国气象局广东快速更新同化数值预报系统(CMA-GD)、中国气象局上海数值预报模式系统(CMA-SH9)和欧洲中期天气预报中心全球模式(ECMWF)的降水预报产品作海南岛晴雨预报的检验评估,结果表明:(1) CMA-SH9具有较高的晴雨准确率及较小的雨区面积偏差。CMA-GD(ECMWF)评分偏低与较高漏(空)报比例有关,漏(空)报易出现在五指山以南和东部沿海一带。三个模式在海南岛东部沿海一带的晴雨准确率随预报时效减小而提高;(2) CMA-GD多漏报,CMA-SH9和ECMWF多空报。CMA-GD和CMA-SH9比ECMWF具有较快速的调整能力,预报时效缩短,雨区面积偏差减小,晴雨评分提高;(3) 降水面积百分比为0~20%、20%~40%、40%~60% 的局地降水事件中,CMAGD和CMA-SH9预报雨区面积偏大,预报时效增加,面积偏差由偏多转偏少;降水面积百分比为60%~80%、80%~100%的降水事件中,雨区面积随时效增加呈增加趋势。(4) CMA-GD对海南岛北部高频降水中心具有较强的预报能力,但易漏报南部高频降水中心。CMA-SH9在海南岛北部易出现高频降水面积偏大,质心偏东的误差,但对南部的高频降水预报能力优于CMA-GD。通过最优面积阈值择优方案迭代集成CMA-GD、CMASH9和ECMWF的降水预报,可有效提高海南岛高分辨率网格晴雨预报准确率。Abstract: Based on high-resolution gridded precipitation data, precipitation products of the ECMWF global model, and CMA-GD and CMA-SH9 mesoscale models are examined for the period from May 1 to September 30 in 2019. These precipitation products are compared in terms of respective sunny/rainy scores and distribution patterns, as well as precipitation areas and the location of high-frequency precipitation centers. Results are as follows: (1) CMA-SH9 model has a higher sunny / rainy accuracy with minor precipitation area bias. The lower score of CMA-GD (ECMWF) is related to the high rate of missing (false) alarm ratio which is easy to appear to the south of Wuzhi Mountain and the eastern coastal area of Hainan Island. Three models show an identical feature that their sunny / rainy accuracy increases in the eastern coastal area of Hainan Island when time range reduces; (2) CMA-GD has more missing alarms while the CMA-SH9 and ECMWF models show more false alarms. Compared with ECMWF, CMA-GD and CMA-SH9 both adjust fast. They reduce the precipitation area bias and get higher sunny/rainy score as time range becomes shorter; (3) For local precipitation events with precipitation area accounting for 0- 20%, 20%-40%, and 40%-60% of Hainan, CMA-GD and CMA-SH9 models predict larger precipitation areas compared with observations and show a trend of decrease as time range becomes longer. However, for precipitation events with precipitation areas accounting for 60%-80% and 80%-100% of Hainan, they forecast smaller precipitation areas and show a trend of increase as time range becomes longer. (4) The forecast products of CMA-GD model match the high-frequency precipitation center in the north of Hainan Island better; however, they are likely to miss the centers in the south of Hainan Island. CMA-SH9 model shows a larger high-frequency precipitation area with eastward deviation of center of mass in the north of Hainan Island, but its forecast capacity for the south of Hainan Island is better than that of CMA-GD. By integrating CMA-GD, CMA-SH9 and ECMWF precipitation products according to the optimal area threshold selection scheme, we can effectively strengthen the accuracy of high-resolution grid sunny/rainy forecasting in Hainan Island.
-
Key words:
- sunny/rainy /
- area bias /
- mesoscale model /
- ECMWF /
-
表 1 各模式基本信息
模式名称 模式分辨率 模式覆盖范围 中国气象局广东快速更新同化数值预报系统(CMA-GD) 3 km 93.64~126.34 °E,
16.60~42.88 °N。化中国气象局上海数值预报模式系统(CMA-SH9) 9 km 52.79~157.19°E,
7.30~59.85 °N。
(兰伯特投影)欧洲中期天气预报中心(ECMWF) 12.5 km 全球 表 2 晴雨检验评定表
实况 预报 有降水≥0.1mm 无降水<0.1mm 0.0 mm NA ND ≥0.1 mm NA NC 无降水 NB ND 表 3 各预报时效模式降水面积百分比的平均偏差、平均绝对偏差和均方根偏差
时效 平均偏差/% 平均绝对偏差/% 均方根偏差/% CMA-GD CMA-SH9 ECMWF CMA-GD CMA-SH9 ECMWF CMA-GD CMA-SH9 ECMWF 36 h -10.25 -3.75 22.96 18.05 14.12 23.06 23.38 20.45 31.30 48 h -13.05 -0.80 23.66 20.61 15.90 23.87 27.16 21.49 32.13 60 h -11.97 4.96 22.90 21.19 13.35 23.18 26.76 20.45 31.33 72 h -14.61 4.70 23.07 22.64 16.50 23.95 28.80 22.59 32.12 -
[1] 金荣花, 代刊, 赵瑞霞, 等. 我国无缝隙精细化网格天气预报技术进展与挑战[J]. 气象, 2019, 45(4): 445-457. [2] KANN A, WANG Y, ATENCIA A, et al. Seamless probabilistic analysis and forecasting: from minutes to days ahead[C]//EGU General Assembly 2018, Vienna: EGU. [3] RAUSER F, ALQADI M, AROWOLO S, et al. Earth system science frontiers: and early career perspective[J]. Bull Amer Meteor Soc, 2017, 98(6): 1 119-1 127. [4] 邵建, 张肃诏, 李强, 等. 智能网格预报时空协调一致关键技术研发[J]. 气象科学, 2019, 39(6): 847-852. [5] 张宏芳, 巨晓璇, 卢珊, 等. 精细化网格的降水预报解析方法对比[J]. 气象科技进展, 2019, 9(3): 7-14. [6] 丁裕国. 降水量Γ分布模式的普适性研究[J]. 大气科学, 1994, 18(5): 552-560. [7] WILKS D S. Maximum likelihood estimation for the Gamma distribution using data containing zeros[J]. J Climate, 1990, 3(12): 1 495- 1 501. [8] 潘旸, 谷军霞, 徐宾, 等. 多源降水数据融合研究及应用进展[J]. 气象科技进展, 2018, 8(1): 143-152. [9] 陈子通, 戴光丰, 钟水新, 等. 中国南海台风模式(TRAMS-V2.0)技术特点及其预报性能[J]. 热带气象学报, 2016, 32(6): 831-840. [10] 陈子通, 徐道生, 戴光丰, 等. 热带高分辨率模式(TRAMS-V3.0)技术方案及其系统预报性能[J]. 热带气象学报, 2020, 3 6(4): 444-454. [11] 陈耀登, 郭闪, 王元兵, 等. 基于优化样本组合的集合-变分混合同化方案研究[J]. 热带气象学报, 2020, 36(4): 464-476. [12] 张诚忠, 薛纪善, 冯业荣, 等. 基于贝叶斯方案的雷达反射率反演水汽及其同化试验[J]. 热带气象学报, 2019, 35(2): 145-153. [13] 张小雯, 唐文苑, 郑永光, 等. GRAPES_3 km数值模式对流风暴预报能力的多方法综合评估[J]. 气象, 2020, 46(3): 367-380. [14] 吴俞, 麻素红, 薛谌彬, 等. GRAPESTYM模式对2012—2013年登陆华南TC的降水预报能力评估及降水释用方法初探[J]. 干旱气象, 2017, 35(4): 657-667. [15] 王晓峰, 许晓林, 徐同, 等. 华东区域数值预报系统对极端降水预报能力的评估[J]. 气象科技进展, 2017, 7(6): 67-74. [16] 卢冰, 孙继松, 仲跻芹, 等. 区域数值预报系统在北京地区的降水日变化预报偏差特征及成因分析[J]. 气象学报, 2017, 75(2): 248-259 [17] 鄢俊一, 莫伟强. 2012年汛期华南中尺度模式与日本模式的降水预报评估分析[J]. 热带气象学报, 2014, 30(3): 594-600. [18] 徐同, 杨玉华, 李佳, 等. SMS-WARMS V2.0模式对中国西南地区降水预报能力的客观检验[J]. 气象, 2019, 45(8): 10 65-1 074. [19] LIANG Z, WANG D, Sea breeze and precipitation over Hainan Island[J]. Q J R Meteorol Soc, 2017, 143(702): 137-151. [20] 郑艳, 蔡亲波, 程守长, 等. 超强台风"威马逊"(1409)强度和降水特征及其近海急剧加强原因[J]. 暴雨灾害, 2014, 33(4): 333-341. [21] 蒋贤玲, 任福民, 马柱国, 等. 2014年两次路径相似热带气旋降水特征及其成因的对比[J]. 地球物理学报, 2017(60): 1 305-1 320. [22] LI X, DAVIDSON Noel, DUAN, Y H, et al. Analysis of an ensemble of high-resolution WRF simulations for the rapid intensification of super typhoon rammasun (2014)[J]. Adv Atmos Sci, 2020, 37(2): 59-82. [23] FENG X, WU R G, CHEN J P, et al. Factors for interannual variations of September-October rainfall in Hainan, China[J]. J Climate, 2013, 26(22): 8 962-8 978. [24] 王雨, 公颖, 陈法敬, 等. 区域业务模式降水预报检验方案比较[J]. 应用气象学报, 2013, 24(2): 171-178. [25] 潘留杰, 薛春芳, 张宏芳, 等. 三种高分辨率格点降水预报检验方法的对比[J]. 气候与环境研究, 2017, 22(1): 45-58.