RESEARCH AND APPLICATION OF BOUNDARY LAYER HEIGHT BASED ON MICROWAVE RADIOMETER AND AEROSOL LIDAR
-
摘要: 分别基于微波辐射计温湿度廓线资料的气块法、位温法和比湿法,地面气象资料的罗氏法及气溶胶激光雷达数据的梯度法,计算得出广州地区大气边界层高度,对比分析5种边界层高度结果及其与气象条件、空气质量之间的关系,结合典型大气污染过程分析边界层高度对PM2.5、O3浓度的影响。结果显示:(1)利用位温法、气块法、罗氏法、比湿法和梯度法计算得出广州地区平均边界层高度分别为2 207 m、1 239 m、901 m、717 m和660 m,位温法显著高估了广州地区的边界层高度;(2)利用气块法得出的混合层高度日变化能够较好地表征白天大气边界层演变特征,利用气块法和比湿法得出的白天混合层高度与近地面O3浓度有显著的正相关关系,相关系数在0.5以上,在O3污染防治中,应同时考虑边界层内垂直输送的影响;(3)利用梯度法得出的边界层高度在污染天气时与PM2.5浓度的相关性较好,能较好地表现出大气污染情况,在PM2.5污染天气过程分析中具有较好的应用价值。Abstract: Based on microwave radiometer temperature and humidity profile data, the atmospheric boundary layer height of Guangzhou was obtained by using the air parcel method, potential temperature method, specific humidity method, Roche method, and gradient method. The results of five kinds of boundary layer heights and their relationships with meteorological conditions and air quality were compared and analyzed, and the influence of boundary layer heights on PM2.5 and O3 concentrations were analyzed in combination with typical air pollution processes. The results showed that: (1) The average boundary layer height in Guangzhou calculated by using the potential temperature method, air parcel method, Rochel method, specific humidity method and gradient method is 2207 m, 1239 m, 901 m, 717 m and 660 m, respectively. The boundary layer height in Guangzhou is significantly overestimated by using the potential temperature method. (2) The diurnal variation of mixing layer height obtained by using the air parcel method can better characterize the evolution characteristics of the atmospheric boundary layer in the daytime. The daytime mixing layer height obtained by using the air parcel method and the specific humidity method has a significant positive correlation with the near-surface O3 concentration, and the correlation coefficient is above 0.5. In the control of O3 pollution, the influence of vertical transport in the boundary layer should be considered. (3) The boundary layer height obtained by using the gradient method has a good correlation with PM2.5 concentration during pollution days, which can better show the atmospheric pollution, and can be applied to the analysis of PM2.5 pollution process.
-
Key words:
- microwave radiometer /
- aerosol lidar /
- boundary layer height /
- ozone
-
表 1 气象条件与边界层高度的相关性分析
相关性 PBL_Parcel PBL_Theta PBL_Q PBL_LS PBL_Lidar 风速 0.428* 0.196* 0.006 0.375* 0.003 气温 0.71* 0.373* 0.140* 0.326* 0.012 降水 -0.091* -0.183* -0.026 -0.062* 0.09* 相对湿度 -0.744* -0.14* -0.55* -0.574* -0.074* 注:*表示为通过0.05的显著性检验。 表 2 边界层高度与空气质量的相关性分析
相关系数 PM2.5 PM10 SO2 NO2 CO O3 AQI O3-15 PBL_Parcel 0.092* 0.102* 0.205* -0.460* -0.204* 0.633* 0.352* 0.729* PBL_Theta -0.275* -0.267* -0.191* -0.379* -0.308* 0.042 -0.107* 0.119 PBL_Qt 0.336* 0.372* 0.334* 0.013 0.073 0.498* 0.423* 0.573* PBL_LS 0.058 0.102* 0.173* -0.263* -0.157* 0.408* 0.172* 0.110 PBL_Lidar 0.212* 0.204* 0.112* 0.093* 0.157* 0.165* 0.169* 0.182 注:*表示为通过0.05的显著性检验;O3_15列为每天15时的O3浓度和混合层高度的相关系数。 表 3 一次污染过程O3浓度与混合层高度的相关性分析
相关系数 PBL_Parcel PBL_Theta PBL_Q PBL_LS PBL_Lidar O3浓度 0.671* 0.325* 0.392* 0.392* -0.054 注:*表示为通过0.05的显著性检验。 -
[1] STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988: 12-20, 117‒120. [2] 车军辉, 赵平, 史茜等. 大气边界层研究进展. 地球物理, 2021, 64(3): 735-751. [3] SEIBERT P, BEYRICH F, GRYNING S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1 001-1 027. [4] 黄俊, 廖碧婷, 王春林, 等. 新型垂直探测资料在污染天气分析中的应用[J]. 中国环境科学, 2019, 39(1): 92-105. [5] 王成刚, 李颖, 曹乐, 等. 苏州东山冬季大气边界层结构特征及其对污染物浓度的影响[J]. 热带气象学报, 2017, 33(6): 912-921. [6] 李霞, 权建农, 王飞, 等. 激光雷达反演边界层高度方法评估及在北京的应用[J]. 大气科学, 2018, 42(2): 435-446. [7] 王琳, 谢晨波, 韩永, 等. 测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012, 7(4): 241-247. [8] HOOPER W P, ELORANTA E W. Lidar measurements of wind in the planetary boundary layer: The method, accuracy and results from joint measurements with radiosonde and kytoon[J]. Journal Climate and Applied Meteorology, 1986, 25(7): 990-1 001. [9] FLAMANT C, PELON J, DURAND P. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1997, 83: 247-284. [10] DAVIS K J, GAMAGE N, HAGELBERG C R, et al. An objective method for deriving atmospheric structure from airborne lidar observations[J]. J Atmos Oceanic Technol, 2000, 17(11): 1 455-1 468. [11] STEYN D G, BALDI M, HOFF R M. The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles[J]. J Atmos Oceanic Technol, 1999, 16(7): 953-959. [12] MICHELE S D, BAUER P. Passive microwave radiometer channel selection based on cloud and precipitation information content[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(617): 1 299-1 323. [13] HOLZWORTH G C. Estimates of mean maximum mixing depths in the contiguous United States[J]. Mon Wea Rev, 1964, 92(5): 235-242. [14] AO C C, CHAN T K, IIJIMA B A, et. al. Planetary boundary layer information from GPS radio occultation measurements[C]. GRAS SAF Workshop on Applications of GPSRO Measurements. California, 2008, USA: 123-131. [15] SEIDEL D J, AO C O, LI K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis[J]. Journal of Geophysical Research, 2010, 115(D16113): 1-15. [16] CIMINI D, DE ANGELIS F, DUPONT J C, et al. Mixing layer height retrievals by multichannel microwave radiometer observations[J]. Atmospheric Measurement Techniques, 2013, 6(11): 2 941-2 951. [17] 杨富燕, 张宁, 朱莲芳, 等. 基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J]. 高原气象, 2016, 35(4): 1 102-1 111. [18] 师宇, 胡非, 丁伟宸, 等. 气溶胶激光雷达和无线电探空观测边界层高度的对比分析[J]. 气候与环境研究, 2019, 24(5): 650-662. [19] 徐栋夫, 曹萍萍, 巫俊威. 激光雷达和探空反演的混合层高度对比分析[J]. 气象科技, 2020(4): 451-458. [20] LUO T, YUAN R M, WANG Z E, et al. Lidar Based Remote Sensing of Atmospheric Boundary Layer Height Over Land and Ocean[J]. Atmospheric Measurement Techniques, 2014, 8338: 173-182. [21] MEDEIROS B, HALL A, BJORN S. What Controls the Mean Depth of the PBL[J]. J Climate, 2005, 18: 3 157-3 172. [22] 蒋德海, 王成刚, 吴兑, 等. 利用风廓线雷达资料对广州地区边界层日变化特征的分析研究[J]. 热带气象学报, 2013, 29(1): 129-135. [23] 祝薇, 李浩文, 王宝民, 等. 多遥感设备联用在区域空气质量变化与边界层结构关系研究中的应用[J]. 环境科学学报, 2018, 38(5): 1 689-1 698 [24] 宋烺, 邓涛, 吴兑, 等. 广州地区典型灰霾过程及不同天气类型下边界层高度研究[J]. 环境科学学报, 2019, 39(5): 1 381-1 391. [25] HEFFTER, J L. Transport layer depth calculations[C]. Proceedings of the second Joint Conference on Applications of Air Pollution Modeling. American Meteorology Society, 1980: 787-791. [26] FERNALD F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 652-653. [27] 王存贵, 李成才, 贺千山, 等. 结合激光雷达评估常规探空资料反演青藏高原混合层高度的适用性[J]. 北京大学学报(自然科学版). 2017, 53(3): 579-587. [28] 廖国莲. 大气混合层厚度的计算方法及影响因子[J]. 中山大学研究生学刊(自然科学、医学版), 2005, 26(4): 66-73. [29] 王宇骏, 黄祖照, 张金谱, 等. 广州城区近地面层大气污染物垂直分布特征[J]. 环境科学研究, 2016, 29(6): 800-809. [30] ZHOU D R, DING A J, MAO H T, et al. Impacts of the East Asian monsoon on lower tropospheric ozone over coastal South China[J]. Environmental Research Letters, 2013, 8(4): 575-591. [31] 戚慧雯, 包云轩, 黄建平, 等. 夹卷对郊外大气边界层内O3影响的数值模拟研究[J]. 热带气象学报, 2018, 34(5): 713-720. [32] TANG G, ZHU X, XIN J, et al. Modelling study of boundary-layer ozone over northern China-Part Ⅰ: Ozone budget in summer[J]. Atmospheric Research, 2017, 187(5): 128-137. [33] HUANG X F, ZOU B B, HE L Y, et al. 2018. Exploration of PM2.5 sources on the regional scale in the Pearl River Delta based on ME-2 modeling[J]. Atmospheric Chemistry and Physics, 18(16): 11 563-11 580. [34] 廖志恒, 许欣祺, 谢洁岚, 等. 珠三角地区日最大混合层高度及其对区域空气质量的影响[J]. 气象与环境学报, 2019, 35(5): 85-92. [35] WANG X M, CHEN W H, CHEN D H, et al. Long-term trends of fine particulate matter and chemical composition in the Pearl River Delta Economic Zone (PRDEZ), China[J]. Frontiers of Environmental Science & Engineering, 2016, 10(1): 53-62. [36] MENUT L, FLAMANT C, PELON J, et al. Urban boundary-layer height determination from lidar measurements over the paris area. Optica Applicata, 1999, 38(6): 945-95. [37] YANG D, LI C, LAU A K, et al. Long-term measurement of daytime atmospheric mixing layer height over Hong Kong. Journal of Geophysical Research Atmospheres, 2013, 118(5): 2 422-2 433. [38] KURIBAYASHI M. Temporal Variation and Vertical Structure of the Marine Atmospheric Mixed Layer over the East China Sea from MieScattering Lidar Data[J]. Scientific Online Letters on the Atmosphere Sola, 2011, 7: 189-192.