RESEARCH ON RETRIEVAL ACCURACY OF AIRS/AQUA RELATIVE HUMIDITY PROFILE UNDER DIFFERENT CLOUD CONDITIONS IN SHANGHAI BASED ON ENCRYPTED SOUNDING DATA
-
摘要: 目前云对卫星相对湿度廓线反演精度的影响研究大多是针对云量,对其他云属性的影响研究尚少,云高也是影响卫星相对湿度廓线反演精度的重要因素。利用上海宝山站L波段(1型)加密探空资料,分析了上海地区7—9月不同质量控制标识、云量和云顶高度条件下大气红外探测器AIRS/Aqua (Atmospheric Infrared Sounder) 相对湿度廓线的反演精度,以期为今后开展AIRS等卫星资料的同化研究提供科学依据。结果表明:(1)AIRS相对湿度廓线反演误差随着云量的增加而逐渐增大,并且随着气压值的升高,少云与多云时的均方根误差(Root Mean Squared Error, RMSE)之差有逐渐增大的趋势;(2)云顶高度越高,AIRS相对湿度廓线反演精度越差,云顶以上湿度廓线反演精度更高,而云顶以下高度的反演误差较大;(3)高云且多云时,AIRS相对湿度廓线的反演精度最差,850 hPa处,AIRS相对湿度反演数据与探空资料绝对误差的下限达到了[-63.51%];(4)虽然质量控制标识为0时,AIRS湿度廓线在对流层范围内的反演精度仍达不到无线电探空的水平,但是相对于质量控制标识1时,反演精度明显提高。Abstract: At present, most of the studies on the influence of cloud on the retrieval accuracy of satellite relative humidity (RH) profiles are mainly concerned with cloud fraction, while there are few studies on the influence of other cloud attributes. Cloud top height is also an important factor affecting the retrieval accuracy of satellite RH profiles. In this study, the L-band encrypted radiosonde data from Shanghai Baoshan Station was used to analyze the accuracy of AIRS/Aqua (Atmospheric Infrared Sounder) retrieved RH profiles under different quality control and cloud conditions from July to September. The purpose of this study is to make preparation for the assimilation of relevant data and to assess the influence of AIRS RH products on the accuracy of regional numerical prediction. The results show that: (1) The error of the AIRS retrieved RH profiles gradually increases with the increase of cloud fraction. With the increase of atmospheric pressure, the difference of the root mean squared errors of RH in each pressure layer tends to increase gradually when there are few clouds or it is cloudy. (2) The higher the cloud top height is, the worse the accuracy of AIRS retrieved RH profiles is. The retrieval accuracy of RH profiles above cloud top is higher, while the retrieval error below cloud top is larger. (3) Under high-level cloud and cloudy conditions, the accuracy of the AIRS retrieved RH profiles is the worst. At 850hPa, the minimum absolute error between the RH data retrieved by AIRS and the radiosonde data reaches -63.51%. (4) Although the accuracy of AIRS retrieved RH profiles in the troposphere is not as high as that of radiosonde when the quality control is 0, the retrieval accuracy is obviously improved compared with that when the quality control is 1.
-
Key words:
- AIRS/Aqua /
- relative humidity profiles /
- encrypted sounding data /
- cloud fraction /
- cloud top height
-
表 1 2018年7—9月AIRS和探空数据的相对湿度廓线精度比较
气压层/hPa 相关系数R P(F检验) 相对湿度MB/% 相对湿度RMSE/% 相对湿度样本数 50 0.45 1.92x10-3 -16.18 17.89 46 70 0.45 1.61X10-3 -8.38 11.98 47 100 0.51 2.93x10-4 18.85 25.80 47 150 0.52 1.23x10-4 13.92 19.80 49 200 0.57 2.30x10-5 10.00 16.69 49 250 0.73 3.40x10-9 11.27 17.87 48 300 0.71 1.48x10-8 10.49 20.64 48 400 0.82 3.64x10-12 8.44 16.60 46 500 0.75 2.66x10-9 6.35 16.55 45 600 0.82 1.00x10-11 -0.60 16.50 44 700 0.76 6.31x10-9 -8.31 20.12 42 850 0.26 0.11 -16.23 26.44 39 925 0.44 4.74x10-3 -10.83 17.74 40 1 000 0.42 7.82x10-3 5.17 14.46 39 -
[1] 王曦, 宋国琼, 姚展予, 等. 用AMSU资料反演西北太平洋海域大气湿度廓线的研究[J]. 北京大学学报(自然科学版), 2010, 46(1): 69- 78. [2] 马鹏飞, 陈良富, 陶金花, 等. 利用红外高光谱资料CrIS反演大气温湿廓线的模拟研究[J]. 光谱学与光谱分析, 2014, 34(7): 1 894-1 897. [3] CHRISTIAN B, MATTHIAS S, BENJAMIN E, et al. Evaluation of MUSICA IASI tropospheric water vapour profiles using theoretical error assessments and comparisons to GRUAN Vaisala RS92 measurements[J]. Atmospheric Measurement Techniques, 2018, 11(9): 4 981- 5 006. [4] 蒋德明. 高光谱分辨率红外遥感大气温湿度廓线反演方法研究[D]. 南京: 南京信息工程大学, 2007. [5] 官莉, HUANG H L, 王振会. 红外高光谱资料反演有云时大气温湿廓线的模拟研究[J]. 遥感学报, 2008 (6): 987-992. [6] 顾雅茹, 刘延安, 刘朝顺, 等. 高光谱红外探测仪温湿度廓线在华东地区的真实性检验[J]. 华东师范大学学报(自然科学版), 2018, 64 (3): 146-156. [7] TOBIN D C, REVERCOMB H E, KNUTESON R O, et al. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation[J]. J Geophy Res, 2006, 111(D9): D09S14. [8] SUSSKIND J, BARNET C, BLAISDELL J, et al. Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder / Advanced Microwave Sounding Unit as a function of fractional cloud cover[J]. J Geophy Res, 2006, 111(D9) [9] SUSSKIND J, BARNET C, BLAISDELL J. Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data Under Cloudy Conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 390-409. [10] DIVAKARLA M G, BARNET C D, GOLDBERG M D, et al. Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts[J]. J Geophysical Research, 2006, 111(D9): D09S15. [11] ZENG Z, MAO F, WANG Z, et al. Preliminary Evaluation of the Atmospheric Infrared Sounder Water Vapor Over China Against High in resolution Radiosonde Measurements[J]. J Geophy Res Atmos, 2019, 124. doi: 10.1029/2018JD029109. [12] SMITH W L, ROSENKRANZ P W, KALNAY E, et al. AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 253-264. [13] 刘旸, 蔡波, 班显秀, 等. AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展, 2013, 28(8): 890-896. [14] 蒋德明, 董超华, 曹思沁. 附加影响因子对红外遥感资料反演大气温湿廓线的辅助作用[J]. 热带气象学报, 2009, 25(S1): 79-84. [15] 倪成诚, 李国平, 熊效振. AIRS资料在川藏地区适用性的验证[J]. 山地学报, 2013, 31(6): 656-663. [16] 占瑞芬, 李建平. 青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征[J]. 大气科学, 2008(2): 242-260. [17] MARIAN A O, LEONARD K A, CRAIG R F, et al. Inter-Comparison of AIRS Temperature and Relative Humidity Profiles with AMMA and DACCIWA Radiosonde Observations over West Africa[J]. Remote Sensing, 2020, 12(16): 2 631. [18] 马玉芬, 潘红林, 张海亮, 等. 大气红外探测器(AIRS)资料在塔克拉玛干沙漠的适用性检验与评估[J]. 干旱区地理, 2018, 41(5): 908- 922. [19] 程海艳, 余晔, 陈晋北, 等. 大气红外探测器(AIRS)温、湿廓线反演产品及边界层高度在黄土高原的验证[J]. 高原气象, 2018, 37(2): 432- 442. [20] 黄兵, 白洁, 刘健文, 钟中. 红外超光谱资料(AIRS)反演"云娜"台风外围晴空大气温度廓线的研究[J]. 热带气象学报, 2007, 23(4): 401- 408. [21] PU Z X, ZHANG L. Validation of Atmospheric Infrared Sounder temperature and moisture profiles over tropical oceans and their impact on numerical simulations of tropical cyclones[J]. J Geophysical Research, 2010, 115(D24). doi: 10.1029/2010JD014258. [22] GETTELMAN A, WEINSTOCK E M, FETZER E J, et al. Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments[J]. Geophysical Research Letters, 2004, 31(22): 359-393. [23] WU L. Comparison of atmospheric infrared sounder temperature and relative humidity profiles with NASA African Monsoon Multidisciplinary Analyses (NAMMA) dropsonde observations[J]. J Geophy Res, 2009, 114(D19). doi: 10.1029/2009JD012083. [24] 范思睿, 王维佳, 林丹. 基于ISCCP云资料的中国地区不同类型云的时空分布[J]. 干旱气象, 2020, 38(02): 213-225. [25] GUAN S, ZHAO W, SUN L, et al. Tropical cyclone-induced sea surface cooling over the Yellow Sea and Bohai Sea in the 2019 Pacific typhoon season[J]. Journal of Marine Systems, 2021, 217(6): 103509. [26] SUN B, REALE A, TILLEY F H, et al. Assessment of NUCAPS S-NPP CRIS / ATMS Sounding Products Using Reference and Conventional Radiosonde Observations[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, PP(6): 1-11. [27] 李伟, 王志文, 谢庄, 等. 高空探测资料气球漂移的计算方法[J]. 应用气象学报, 2005(6): 835-840. [28] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2013. [29] ZHAO T, DAI A, WANG J. Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset[J]. J Climate, 2012, 25(13): 4 549-4 567. [30] 刘瑞霞, 刘杰, 刘月丽. AIRS反演中国区域上对流层水汽分布特征研究[J]. 气候变化研究进展, 2016, 12(1): 1-9. [31] QIN J, YANG K, KOIKE T, et al. Evaluation of AIRS Precipitable Water Vapor against Ground-based GPS Measurements over the Tibetan Plateau and Its Surroundings[J]. Journal of the Meteorological Society of Japan, 2012, 90C: 87-98. [32] 陈勇航, 黄建平, 王天河, 等. 西北地区不同类型云的时空分布及其与降水的关系[J]. 应用气象学报, 2005(6): 717-727, 862. [33] 董超华, 李俊, 张鹏, 等. 卫星高光谱红外大气遥感原理与应用[M]. 北京: 科学出版社, 2013.