ANALYSIS OF MULTI-SCALE VORTICITY BUDGET CHARACTERISTICS DURING THE INTENSIFICATION OF AN IDEAL TROPICAL CYCLONE
-
摘要: 基于中尺度WRF模式,研究了无背景气流环境假设条件下理想热带气旋中低层大气多尺度涡旋运动的发展演变特征。精确的尺度分离是基于傅里叶变换实现的,且原始涡度场被划分为三个尺度范围:系统尺度(大于150 km)、中间尺度(50~150 km)、对流尺度(小于50 km)。研究结果表明:热带气旋的非轴对称本质主要是由于中间尺度和对流尺度上的运动造成的,且中间尺度涡度演变特征与热带气旋增强的阶段性有很好的对应关系,尤其是其快速增强阶段;全尺度涡度收支特征主要表现为两两抵消效应:STR/HAD和TIL/VAD,且前者的净贡献明显强于后者;系统尺度涡度收支特征与全尺度基本一致,但中间尺度涡度收支表现出明显不同特征:积分70 h之前,各收支项均表现出了与系统尺度相反的贡献,之后,各收支项的符号转变与系统尺度相同,但收支项净贡献明显大于系统尺度。总的来说,水平分辨率5 km下模拟的理想热带气旋的快速增强主要与中间尺度上STR/HAD净贡献的快速增长有关。此外,进一步研究了特定时段中间尺度涡度收支项的空间演变,结果表明:在热带气旋增强阶段,各收支项均在涡旋内核的轴对称化中有不可忽视的作用,且TIL在中心负涡度异常衰退、最终变为正涡度过程中起主导作用。Abstract: Based on the mesoscale WRF model, the present study analyzes the development and evolution characteristics of multi-scale vortices in the middle and lower atmospheres of an ideal tropical cyclone under the assumption of no background airflow environment. The precise scale separation is based on Fourier transform, and the original vorticity field is divided into three scale ranges including system scale (greater than 150 km), intermediate scale (50~150 km), and convective scale (less than 50 km). The results show that the non-axisymmetric structure of the tropical cyclone is mainly caused by the movement on intermediate and convective scales. Moreover, the evolution characteristics of the intermediate-scale vorticity correspond well with the phases of tropical cyclone intensification, especially the rapid intensification phase. The full-scale vorticity budget feature is mainly manifested as offset effects, i.e., STR/HAD and TIL/VAD, and the net contribution of the former is significantly stronger than that of the latter. The features of the system-scale vorticity budget and the full-scale vorticity budget are basically the same, but the intermediate-scale vorticity budget shows distinctive characteristics: before the integration of 70h, the contribution of each budget item is opposite to that on the system scale, and afterwards, the sign transition of the items is the same as that on the system scale; however, the net contribution of the income and expenditure items is significantly larger than that on the system scale. In general, the rapid increase of the simulated ideal tropical cyclone with the horizontal resolution lower than 5km is mainly related to the rapid increase of the net contribution of STR/HAD on the intermediate scale. Furthermore, we further study the spatial evolution of the intermediate-scale vorticity budget items during a specific period. The results show that during the intensification stage of the tropical cyclone, each budget term plays a non-negligible role in the axisymmetricalization of the vortex core, and TIL plays a leading role when the abnormally negative vorticity in the center decays and finally becomes a positive vorticity.
-
Key words:
- WRF model /
- ideal model /
- tropical cyclone intensification /
- multi-scale /
- vorticity budget
-
图 8 第一行为1 km高度上中尺度涡度07时50分—08时30分每10分钟的演变,阴影表示相对涡度(单位:10-4 s-1);第二行同第一行,阴影表示相对涡度,等值线表示拉伸项(等值线值为-5×10-8,-4×10-8,-3×10-8,-2×10-8,-1×10-8,0,2×10-8,4×10-8,6×10-8,8×10-8,10×10-8 s-2,虚线表示负值);第三行同第一行,阴影表示相对涡度,等值线表示平流项(等值线值为-5×10-8,-4×10-8,-3×10-8,-2×10-8,-1×10-8,0,1×10-8 s-2,虚线表示负值)。
每张子图的区域为200 km×200 km。
图 9 第一行为1 km高度上中尺度涡度第29时40分—30时20分每10分钟的演变,阴影表示相对涡度(单位:10-4 s-1);第二行同第一行,叠加的等值线表示拉伸项(等值线值为-1.0×10-7,-0.5×10-7,0,0.5×10-7,1.0×10-7,1.5×10-7,2.0×10-7,2.5×10-7 s-2,虚线表示负值);第三行同第一行,但等值线表示平流项(等值线值为-2×10-7,-1×10-7,0,1×10-7,2×10-7,3×10-7 s-2,虚线表示负值);第四行同第一行,但等值线表示TIL(等值线值为-1.6×10-7,-1.2×10-7,-0.8×10-7,-0.4×10-7,0,0.3×10-7,0.6×10-7,0.9×10-7,1.2×10-7 s-2,虚线表示负值);第五行同第一行,但等值线表示VAD (等值线值为-1.2×10-7,-0.9×10-7,-0.6×10-7,-0.3×10-7,0,0.4×10-7,0.8×10-7,1.2×10-7,1.6×10-7 s-2,虚线表示负值)。
每张子图的区域为200 km×200 km。
图 10 一行为1 km高度上中间尺度涡度第69时40分—70时20分每10分钟的演变,阴影表示相对涡度(单位:10-4 s-1);第二行同第一行,叠加的等值线表示STR(等值线值为-10×10-7,-5×10-7,0,5×10-7,10×10-7,15×10-7 s-2,虚线表示负值);第三行同第一行,但等值线表示HAD(等值线值为-30×10-7,-20×10-7,-10×10-7,0,5×10-7,10×10-7,15×10-7,20×10-7 s-2,虚线表示负值);第四行同第一行,但等值线表示TIL(等值线值为-6×10-7,-4×10-7,-2×10-7,0,2×10-7,4×10-7,6×10-7 s-2,虚线表示负值);第五行同第一行,但等值线表示VAD(等值线值为-4×10-7,-2×10-7,0,1×10-7,2×10-7,3×10-7 s-2,虚线表示负值)。
每张子图的区域为200 km×200 km。
-
[1] MARKS F, SHAY D, LYNN K. Landfalling tropical cyclones: forecast problems and associated research opportunities[J]. Bull Amer Meteor Soc, 1998, 79(2): 305-305. [2] 张文龙, 崔晓鹏. 热带气旋生成问题研究综述[J]. 热带气象学报, 2013, 29(2): 337-346. [3] TANG B, EMANUEL K A. Mid-level ventilation's constraint on tropical-cyclone intensity[J]. J Atmos Sci, 2010, 67(6): 1817-1830. [4] MONTGOMERY M T, SMITH R K. Paradigms for tropical-cyclone intensification[J]. Australian Meteorological and Oceanographic Journal, 2014, 64(1): 37-66. [5] KAPLAN J, DEMARIA M, KNAFF J A. A revised tropical cyclone rapid intensification index for the Atlantic and Eastern North Pacific Basins[J]. Wea Forecasting, 2010, 25(1): 220-241. [6] HENDRICKS E A, PENG M S, FU B, et al. Quantifying evironmental control on tropical cyclone intensity change[J]. Mon Wea Rev, 2010, 138(8): 3243-3271. [7] 郑秀丽, 吴立广, 周星阳, 等. 台风Rammasun(2014)与飓风Wilma(2005)快速增强过程的内核结构变化比较[J]. 热带气象学报, 2020, 36 (2): 219-231. [8] CHARNEY J G, ELLASSEN A. On the growth of the Hurricane Depression[J]. J Atmos Sci, 1964, 21(1): 68-75. [9] OOYAMA K V. Conceptual evolution of the theory and modeling of the tropical cyclone[J]. J Meteor Soc Japan, 1982, 60(1): 369-380. [10] EMANUEL K A. An air-sea interaction theory for tropical cyclones. Part Ⅰ: Steady state maintenance[J]. J Atmos Sci, 1986, 43(6): 585-604. [11] PERSING J, MONTGOMERY M T, MCWILLIAMS J, et al. Asymmetric and axisymmetric dynamics of tropical cyclones[J]. Atmos Chem Phys, 2013, 13(24): 12299-12341. [12] SMITH R K, MONTGOMERY M T, SANG N V. Tropical cyclone spin-up revisited[J]. Quart J R Meteor Soc, 2010, 135(642): 1321-1335. [13] MONTGOMERY M T, NGUYEN V S, PERSING J, et al. Do tropical cyclones intensify by WISHE?[J]. Quart J R Meteor Soc, 2010, 135 (644): 1697-1714. [14] HENDRICKS E A, MONTGOMERY M T, DAVIS C A. On the role of'vortical'hot towers in formation of tropical cyclone Diana (1984) [J]. J Atmos Sci, 2004, 61(11): 1209-1232. [15] WANG Y P, CUI X P, HUANG Y J. Characteristics of multiscale vortices in the simulated formation of Typhoon Durian (2001)[J]. Atmos Sci Lett, 2016, 17(9): 492-500. [16] FANG J, ZHANG F. Evolution of multiscale vortices in the development of hurricane dolly (2008)[J]. J Atmos Sci, 2011, 68(1): 103-122. [17] ROGERS R F, REASOR P D, ZHANG J A. Multiscale structure and evolution of hurricane earl (2010) during rapid intensification[J]. Mon Wea Rev, 2015, 143(2): 536-562. [18] YAN M, WU Y, LIOU Y. The study of inland eyewall reformation of Typhoon Fanapi(2010) using numerical experiments and vorticity budget analysis[J]. J Geophys Res Atmos, 2018, 123(7): 9604-9623. [19] RAYMOND D J, LÓPEZ CARRILLO C. The vorticity budget of developing Typhoon Nuri (2008)[J]. Atmos Chem Phys, 2011, 11(1): 147- 163. [20] CHEN X, WANG Y, FANG J, et al. A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part Ⅱ: Roles of inner-core processes[J]. J Atmos Sci, 2018, 75(1): 235-255. [21] 温晓培, 隆霄, 田畅, 等. 超强台风SANBA发展演变过程中涡度及环流收支的诊断分析[J]. 热带气象学报, 2018, 34(1): 87-101. [22] MONTGOMERY M T, NICHOLLS M E, CRAM T A, et al. A vortical hot tower route to tropical cyclone[J]. J Atmos Sci, 2006, 63(1): 355- 386. [23] YUAN W, ZHANG L, PENG J, et al. Mesoscale horizontal kinetic energy spectra of a tropical cyclone[J]. J Atmos Sci, 2018, 75(10): 3579- 3596. [24] JORDAN C L. Mean soundings for the West Indies area[J]. J Meteoro, 1958, 15(1): 91-97. [25] SITKOWSKI M, BARNES G M. Low-level thermodynamic, kinematic and reflectively fields of Hurricane Guillermo(1997) during rapid intensification[J]. Mon Wea Rev, 2009, 127(2): 645-663. [26] WANG Y P, DAVIS CHRISTOPHER A, HUANG Y J. Dynamics of lower-tropospheric vorticity in idealized simulations of tropical cyclone formation[J]. J Atmos Sci, 2019, 76(3): 707-727. [27] MCWILLIAMS J C, FLIERL G R. On the evolution of isolated, nonlinear vortices[J]. J Phys Oceanogr, 1979, 9(6): 1155-1182. [28] SMITH R K, ULRICH W. An analytical theory of tropical cyclone motion using a barotropic model[J]. J Atmos Sci, 1990, 47(16): 1973- 1986. [29] SCHECTER D A, DUBIN D H E. Vortex motion driven by a background vorticity gradient[J]. Phys Res Lett, 1999, 83(11): 2191-2194. [30] 徐威, 周顺武, 葛旭阳, 等. 西北太平洋热带气旋快速增强阶段的风速分布特征[J]. 热带气象学报, 2017, 33(2): 259-266. [31] WANG Z, MONTGOMERY M T, DUNKERTON T J. Genesis of pre-hurricane Felix (2007). Part Ⅱ: Warm core formation, precipitation evolution, and predictability[J]. J Atmos Sci, 2009, 67(6): 1730-1744. [32] DAVIS CHRISTOPHER A, GALARNEAU JR, THOMAS J. The vertical structure of mesoscale convective vortices[J]. J Atmos Sci, 2009, 66(3): 686-704. [33] ROSIMAR R B, CHRISTOPHER A D, RYAN D T. A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear[J]. J Atmos Sci, 2018, 75(12): 4149-4173.