ANALYSIS OF THE IMPACT OF UNDERLYING SURFACE ON THE NORTHWARD-TRAVELING TROPICAL CYCLONE INTENSITY CHANGE IN THE BOHAI COASTAL REGION
-
摘要: 利用统计分析结合数值模拟试验的方法,研究1949—2019年6—9月登陆北上后影响环渤海地区的热带气旋(后统称TC)所经下垫面和强度变化的不同特征,及环渤海地区下垫面对TC强度加强的可能影响。结果表明:71年间共有25例TC影响环渤海地区,按照首次登陆点的不同将其分为山东及山东以北登陆(第一类,11个),以及山东以南登陆(第二类,14个)两类,第一类TC北上时路径所经下垫面为先海洋后陆地,发生变性的几率较小且北上后无加强,第二类路径所经下垫面为先陆地后海洋,移入环渤海区域后发生变性的几率增大且存在强度加强现象,其中加强的TC共5例;对第二类TC中强度加强的个例“温比亚(2018)”TC进行数值模拟试验表明,增加或降低黄渤海的海温时,TC均表现出加强趋势,将黄渤海修改为草地时,TC不再加强,而海陆分布指数的分析表明无论海温如何变化,TC由陆地移入海洋与强度加强趋势之间关系密切。以上表明TC由陆地移入黄渤海是产生强度增强趋势的主要原因。Abstract: Based on statistical analyses and numerical simulations, the variation characteristics of tropical cyclones (referred to as TCs hereafter) intensity change in the Bohai coastal region were studied for June to September in 1949 to 2019. The impact of the underlying surface on the TCs intensity change was explored. The results are shown as follows. A totoal of 25 TCs reached the Bohai coastal region in the 71 years studied. Based on the first landfall location, the TCs were divided into two categories. Category one made landfall on Shandong province or north of it (11 cases), and Category two made landfall south of the province (14 cases). Category-one TCs passed the ocean first, and then landed as they moved northward. This category of TCs had less probability of extratropical transformation and did not strengthen as they headed north. The Category-two TCs landed first and then passed through the oceanic underlying surface. This kind of TCs had more probability of extratropical transformation and strengthening. There were a total of five Category-two TCs that strengthened. The numerical simulation of the strengthened TC "Rumbia (2018)" in Category two reveals that the TC strengthened with both increasing and decreasing sea surface temperature (SST) of Yellow and Bohai Seas, but the strengthening disappeared if the underlying surface of the marine areas was changed to grassland during the simulation. The analysis of a land-sea distribution index indicates that the migration of TCs from land to the ocean was closely related to the strengthening trend no matter how the SST changed. The above analysis reveals that the main reason of TC strengthening is that the TC moved into the areas of Yellow and Bohai Seas from land.
-
表 1 控制试验及敏感性试验方案设计
试验名称 试验描述 CTRL 控制试验 SSTH 渤海及黄海中北部海温增加3 ℃ SSTL 渤海及黄海中北部海温减小3 ℃ NOOC 渤海及黄海中北部海洋下垫面修改为草地 表 2 基于CMA/STI资料统计的在环渤海区域强度增强TC列表
TC编号 增强时是否发生变性 增强时是否在黄渤海区域 6小时强度变化最大值/(m/s) 195310 是 否 5 198407 否 否 6 198509 否 是 5 201814 否 是 5 201818 是 是 5 -
[1] 李英, 陈联寿, 张胜军. 登陆我国热带气旋的统计特征[J]. 热带气象学报, 2004, 20(1): 14-23. [2] 李英, 陈联寿. 湿地边界层通量影响热带气旋登陆维持和降水的数值试验[J]. 气象学报, 2005, 63(5): 683-693. [3] 李英, 陈联寿, 徐祥德. 水汽输送影响登陆热带气旋维持和降水的数值试验[J]. 大气科学, 2005, 29(1): 91-98. [4] 周毅, 宋辉, 肖坤, 等. 一次变性台风再增强过程的敏感性试验[J]. 热带气象学报, 2012, 28(3): 289-299. [5] 张雪蓉, 陈联寿, 濮梅娟, 等. 登陆台风变性过程的物理机制分析[J]. 气象科学, 2013, 33(6): 685-692. [6] 端义宏, 余晖, 伍荣生. 热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5): 636-645. [7] CHEN H, ZHANG D L. On the rapid intensification of hurricane Wilma (2005). Part Ⅱ: convective bursts and the upper-level warm core[J]. J Atmos Sci, 2013, 70(1): 146-162. [8] WANG H, WANG Y. A numerical study of typhoon Megi(2010). part Ⅰ: Rapid intensification[J]. Mon Wea Rev, 2014, 142(1): 29-48. [9] LI X, DAVIDSON N E, DUAN Y H, et al. Analysis of an ensemble of high-resolution WRF simulations for the rapid intensification of super typhoon Rammasun (2014)[J]. Adv Atmos Sci, 2020, 37(2): 187-210. [10] 李青青, 周立, 范轶. 台风云娜(2004)的高分辨率数值模拟研究: 眼壁小尺度对流运动[J]. 气象学报, 2009, 67(5): 787-798. [11] 陈瑞闪. 试论台风的"空心"现象[J]. 海洋预报, 1987, 4(1): 68-72. [12] 李英, 陈联寿, 雷小途. 高空槽对9711号台风变性加强影响的数值研究[J]. 气象学报, 2006, 64(5): 552-563. [13] CHEN L S, LI Y, CHENG Z Q. An overview of Research and Forecasting on rainfall associated with tropical cyclone[J]. Adv Atmos Sci, 2010, 27(5): 967-976. [14] ZENG Z H, WANG Y, DUAN Y H, et al. On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity[J]. Adv Atmos Sci, 2010, 27(2): 335-355. [15] DEMARIA M, KAPLAN J. An updated statistical hurricane intensity prediction scheme(SHIPS) for the Atlantic and Eastern North Pacific basins[J]. Wea Forecasting, 1999, 14(3): 326-337. [16] 陈国民, 曾智华, 曹庆. 海温对0907号热带气旋"天鹅"入海后强度变化影响的数值模拟研究[J]. 热带气象学报, 2013, 29(6): 984-992. [17] WU L, WANG B, SCOTT B. Impacts of air-sea interaction on tropical cyclone track and Intensity[J]. Mon Wea Rev, 2005, 133(11): 3 299-3 314. [18] 郭丽霞, 陈联寿, 李英, 等. 登陆中国热带气旋入海强度变化的统计特征[J]. 热带气象学报, 2010, 26(1): 65-70. [19] YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. J Atmos Oceanic Technol, 2014, 31(2): 287-301. [20] VON STORCH H, LANGENBERG H, FESER F. A spectral nudging technique for dynamical downscaling purposes[J]. Mon Wea Rev, 2000, 128(10): 3 664-3 673. [21] LI Q L, LI Z L, PENG Y L, et al. Statistical regression scheme for intensity prediction of tropical cyclones in the Northwestern Pacific[J]. Wea Forecasting, 2018, 33(5): 1 299-1 315. [22] LI Q, WANG Y Q. A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone[J]. Mon Wea Rev, 2012, 140(9): 2 782-2 805.