ANALYSIS ON THE CAUSE OF MESOSCALE CONVECTIVE COMPLEX DEVELOPMENT AFTER A TYPHOON MOVED OUT
-
摘要: 应用FY-4A卫星云顶亮温(TBB)、自动站雨量资料和ERA5(0.25 °×0.25 °)再分析资料,对2020年第4号台风“黑格比”移出后在杭州湾生成MCC发展成因进行了分析。结果表明:(1)台风南侧的切变线辐合抬升作用以及南亚高压东部反气旋环流辐散抽吸作用,有利于中低空大气上升运动的增强,为MCC的发展增强提供良好的动力抬升条件;(2)低层台风北上后,其移动方向左后侧的冷空气南下,并与长三角地区的西南低空暖湿气流强烈交汇,斜压锋生增强,形成较强的上升运动;(3)受大陆高压东移影响,对流层中高层干冷空气东移,叠加在对流层中低空暖湿急流之上,形成了有利于MCC发生发展的大气位势不稳定层结;(4)切变线南端的西南低空急流不仅加强了低层大气的辐合和上升运动,更重要的是为MCC的发生发展提供丰富的水汽输送和汇聚;(5)水汽凝结潜热释放在MCC发展中起重要作用。水汽释放潜热加热大气,使上升运动增强,低层辐合进一步增强。低层水汽汇聚并不断向高空输送,补偿了高空凝结的水汽,潜热的不断释放,有利于MCC发展和维持。总之,台风中心移出后,台风南侧的切变线及其南侧的西南暖湿气流稳定地维持在MCC上空,为MCC的发展提供良好的动力和热力条件。
-
关键词:
- 暴雨 /
- 台风 /
- 中尺度对流复合体(MCC) /
- TBB /
- 潜热释放
Abstract: The FY-4A satellite brightness temperature (TBB), automatic weather stations rainfall data and ERA5 (0.25 °×0.25 °) reanalysis were used to analyze the causes of the development of a mesoscale convective complex (MCC) in Hangzhou Bay after Typhoon Hagupit (coded 2004) moved out in 2020. The results are shown as follows. (1) The convergent and uplifting effect of a shear line on the south side of the typhoon as well as the divergent and pumping effect of anticyclonic circulation in the east of the South Asian High were conducive to the enhancement of the vertical ascending motion of the atmosphere in the middle and low levels, and provided good dynamic conditions for the development and enhancement of the MCC. (2) After the typhoon moved northward, it guided the cold air on the rear left side of its moving direction to go southward, and strongly intersected with the warm and humid air of a southwesterly in the low-level in the Yangtze River Delta region, which intensified the baroclinic-frontogenesis and formed a strong upward movement. (3) With the eastward movement of a continental high, the dry and cold air in the mid- and upper-level also moved eastward toward a warm and humid jet in the low-level, forming an unstable atmospheric potential stratification that was favorable for the occurrence and development of the MCC. (4) The southwest low-level jet at the southern end of the shear line not only strengthened the convergence and upward movement of the low-level atmosphere, but also provided abundant water vapor and energy transport for the MCC development. (5) Latent heat release played an important role in the MCC's development. The latent heat heated the atmosphere, which enhanced the ascending motion, and the convergence of the low-level. The low-level water vapor converged and was continuously transported to the high-level, which compensated the water vapor condensed in the upper air, and the latent heat was continuously released, which was conducive to the development and maintenance of the MCC. In conclusion, after the typhoon center moved out, the shear line and the southwest warm and humid air on the south side of the typhoon were stably maintained over the MCC, which provided favorable dynamic and thermal conditions for the development of the MCC.-
Key words:
- heavy rain /
- typhoon /
- mesoscale convective complex (MCC) /
- TBB /
- latent heat release
-
-
[1] MADDOX R A. Mesoscale convective complexes[J]. Bull Amer Meteor Soc, 1980, 61(11): 1 374-1 387. [2] 李玉兰, 王婧嫆, 郑新江, 等. 我国西南-华南地区中尺度对流复合体(MCC)的研究[J]. 大气科学, 1989, 13(4): 417-422. [3] 吴芳芳, 俞小鼎, 王慧, 等. 一次黄海之滨中尺度对流复合体多尺度结构特征观测研究[J]. 气象学报, 2019, 77(5): 785-805. [4] 伍星赞, 纪英惠. 华南地区MCC云图特征和成因分析[J]. 气象, 1996, 22(4): 32-36. [5] 谢静芳, 王晓明. 东北地区中尺度对流复合体的卫星云图特征[J]. 气象, 1995, 21(5): 41-44. [6] 马红, 郑翔飚, 胡勇, 等. 一次西南涡引发MCC暴雨的卫星云图和多普勒雷达特征分析[J]. 大气科学学报, 2010, 33(6): 688-696. [7] 张晰莹, 吴英, 王承伟, 等. 东北地区MCC雷达回波特征分析[J]. 气象, 2010, 36(8): 32-39. [8] 覃丹宇, 江吉喜, 方宗义, 等. MCC和一般暴雨云团发生发展的物理条件差异[J]. 应用气象学报, 2004, 15(5): 590-600. [9] 康凤琴, 肖稳安. 我国南方MCC的涡度、水汽和热量收支平衡[J]. 高原气象, 2001, 20(3): 332-339. [10] BLUESTEIN H W, MARKS F D Jr. On the structure of the eyewall of Hurricane Diana(1984): Comparison of radar and visual characteristics[J]. Mon Wea Rev, 1987, 115: 2 542-2 552. [11] HOLLAND G J, LANDER M. Contributions by mesoscale systems to meandering motion of tropical cyclones Ⅰ. WMO/TD, 1991, No. 472: 72-82. [12] 罗哲贤, 邹立尧. 随机分布的小尺度涡旋场对台风路径影响的研究[J]. 气象学报, 2010, 68(1): 32-38. [13] 沈新勇, 毕明玉, 张玲, 刘佳. 中尺度对流系统对台风"风神"移动路径影响的研究[J]. 气象学报, 2012, 70(6): 1 173-1 187. [14] 许秦. 台风中的不稳定螺旋惯性重力波[J]. 中国科学: 地球科学, 1982, 665-673. [15] CHEN BUO-FU, LEE CHENG-SHANG, ELSBERRY RUSSELL L. On tropical cyclone size and intensity changes associated with two types of long-lasting rainbands in monsoonal environments[J]. Geophys Res Lett, 2014, 41: 2 575-2 581. [16] 陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 33(3): 420-432. [17] 赵宇, 崔晓鹏, 高守亭. 引发华北特大暴雨过程的中尺度对流系统结构特征研究[J]. 大气科学, 2011, 35(5): 945-962. [18] 徐文慧, 倪允琪, 汪小康, 等. 登陆台风内中尺度强对流系统演变机制的湿位涡分析[J]. 气象学报, 2010, 68(1): 88-101. [19] 刘伟, 张庆红. 登陆台风中的中尺度对流系统的数值研究[J]. 北京大学学报(自然科学版), 2004, 40(1): 73-79. [20] 冀春晓, 赵放, 高守亭, 等. 登陆台风Matsa(麦莎)中尺度扰动特征分析[J]. 大气科学, 2012, 36(3): 551-563. [21] 钱传海, 路秀娟, 陈涛. 引起"碧利斯"强降水的MCS数值模拟研究[J]. 气象, 2009, 35(4): 11-19. [22] 孙建华, 齐琳琳, 赵思雄. "9608"号台风登陆北上引发北方特大暴雨的中尺度对流系统研究[J]. 气象学报, 2006, 64(1): 57-71. [23] 张艳霞, 蒙伟光, 戴光丰, 等. 台风"凡亚比"登陆过程中暴雨MCSs演变及形成机理[J]. 热带气象学报, 2015, 31(4): 433-443. [24] ZHANG D, FRITSCH J M. Numerical Simulation of the Meso-β Scale Structure and Evolution of the 1977 Johnstown Flood. Part Ⅰ: Model description and verification[J]. J Atmos Sci, 1987, 44(18): 2 593-2 612. [25] MENARD R D, FRITSCH J M. A Mesoscale Convective Complex-Generated Inertially Stable Warm Core Vortex[J]. Mon Wea Rev, 1989, 117(6): 1 237-1 261. [26] MILLER D, FRITSCH J M. Mesoscale Convective Complexes in the Western Pacific Region[J]. Mon Wea Rev, 1991, 119(12): 2 978-2 992. [27] 吕艳彬, 郑永光, 李亚萍, 等. 华北平原中尺度对流复合体发生的环境和条件[J]. 应用气象学报, 2002, 13(4): 406-412. [28] 董元昌, 陈功, 吴遥. 一次非典型西南低涡与降水过程相互关系的天气学分析[J]. 高原山地气象研究, 2017, 37(1): 7-13. [29] 胡国权, 丁一汇. 1991年江淮暴雨时期的能量和水汽循环研究[J]. 气象学报, 2003, 61(2): 146-163. [30] 文莉娟, 程麟生, 左洪超, 等. "8.5"华南前汛期暴雨中尺度系统发生发展的动力、热量和水汽收支诊断[J]. 高原气象, 2006, 25 (1): 45-51. [31] LUO H B, MICHO Y. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ: Heat and Moisture budgets[J]. Mon Wea Rev, 1984, 112: 966-989. [32] 冯伍虎, 程麟生. "98•7"特大暴雨中尺度系统发展的热量和水汽收支诊断[J]. 应用气象学报, 2001, 12(4): 419-432.