X-BAND DUAL-POLARIZATION PHASED-ARRAY RADAR OBSERVATIONS OF A SUPERCELL
-
摘要: 为了研究X波段双偏振相控阵雷达对超级单体风暴的探测能力,利用X波段双偏振相控阵雷达和S波段双偏振天气雷达资料,分析了一次发生在华南地区的超级单体风暴在成熟阶段的精细结构观测特征,结果表明:X波段双偏振相控阵雷达较高的时空分辨率有利于精细监测超级单体快速演变过程,但同时受衰减影响明显,超级单体核心区后侧出现明显的“V”型缺口;超级单体的低层观测到CC谷和ZDR弧,中层观测到ZDR环和CC环,高层高ZH区对应较小的ZDR和CC,这些都是超级单体发展旺盛的重要特征;垂直方向上观测到ZDR柱,ZDR柱与上升气流密切相关。降雹前ZDR柱迅速增加,冰雹降落后ZDR柱高度迅速降低。冰雹降落到地面后会部分融化,导致含水量显著增加,因此在近地层出现KDP大值区,冰雹与降水的混合相态则使得CC降低,这对冰雹的临近预警和识别冰雹在地面的降落位置具有很好的指示意义。研究结果可为X波段双偏振相控阵雷达在强对流天气监测预警中的应用提供参考。Abstract: To investigate the capability of X-band dual-polarization phased-array radar to detect supercells, we analyzed the fine-structure characteristics of a supercell storm during its mature stage in south China by using data from X-band dual-polarization phased-array radar and S-band dual-polarization weather radar. The results show that the high temporal and spatial resolution of X-band dual-polarization phased-array radar can facilitate the fine monitoring of the rapid evolution of supercells; however, at the same time, it is significantly affected by attenuation, and there is an obvious V-shaped gap at the back of the core area of the supercell. ZDR columns are observed in the vertical direction, and this is closely related to updrafts. ZDR columns develop rapidly before it hails, and the height of ZDR columns decreases rapidly after it hails. After the hail falls to the ground, it will partially melt, resulting in a significant increase in water content, so there is a large KDP value area in the near-surface layer. Moreover, the mixed phase of hail and precipitation reduces the CC, which appears to be a good indication for the early warning of hail weather and the identification of the landing position of hail on the ground. The research results can provide reference for the application of X-band dual-polarization phased-array radar in severe convective weather monitoring and early warning.
-
Key words:
- phased-array radar /
- dual-polarization radar /
- supercell /
- early warning of hail weather
-
图 8 2020年3月27日18:06相控阵雷达观测超级单体沿图 3通过风暴中心的292 °方位角做的垂直剖面图Z(a)、V(b)、ZDR(c)、KDP(d)、CC(e)、HCL(f)
表 1 X波段相控阵雷达主要性能参数
项目 参数指标 天线形式 一维电子扫描相控阵体制 扫描策略 水平机械扫描,垂直相控阵扫描 天线尺寸 长1.3 m,宽0.7 m 工作频率 9.3~9.5 GHz 波束宽度 水平3.6 °,垂直1.8 ° 天线增益 ≥36 dB 极化隔离度 ≥30dB 极化方式 水平垂直双极化 脉冲重复频率 ≤4kHz 峰值功率 ≥256W 探测距离 ≥42km 距离分辨率 30m -
[1] 郑媛媛, 俞小鼎, 方翀, 等. 一次典型超级单体风暴的多普勒天气雷达观测分析[J]. 气象学报, 2004, 62(3): 317-328. [2] 俞小鼎, 郑媛媛, 廖玉芳, 等. 一次伴随强烈龙卷的强降水超级单体风暴研究[J]. 大气科学, 2008, 32(3): 508-522. [3] 黄先香, 炎利军, 顾伯辉, 等. 广东一次超级单体强龙卷的形成环境和观测特征分析[J]. 热带气象学报, 2021, 37(5/6): 721-732. [4] BROWNING K A, LUDLAM F H, MACKLIN W C. The density and structure of hailstones[J]. Quart J R Meteor Soc, 1963, 89(379): 75-84. [5] MARWITZ J D. The structure and motion of severe hailstorms. Part Ⅰ: Supercell storms[J]. J Appl Metero, 1972, 11(1): 166-179. [6] DONALDSON R. Vortex signature recognition by a Doppler radar[J]. J Appl Metero, 1970, 9(4): 661-670. [7] BROWN R A, BURGESS D W, CRAWFORD K C. Twin tornado cyclones within a severe thunderstorm: Single-Doppler radar observations[J]. Weatherwise, 1973, 26(1): 63-71. [8] RAY P S, DOVIAK R J, WALKER G B, et al. Dual-Doppler observation of a tornadic storm[J]. J Appl Metero, 1975, 14(8): 1 521-1 530. [9] 冯晋勤, 汤达章, 王新强, 等. 新一代天气雷达超级单体风暴中气旋特征分析[J]. 大气科学学报, 2010, 33(6): 738-744. [10] MOLLER A R, DOSWELL C A Ⅲ, FOSTER M P, et al. The operational recognition of supercell thunderstorm environments and storm structures[J]. Wea Forecasting, 1994, 9(3): 327-347. [11] SELIGA T A, BRINGI V N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation[J]. J Appl Metero, 1976, 15(1): 69-76. [12] PARK H S, RYZHKOV A V, ZRNI D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and Application to an MCS[J]. Wea Forecasting, 2009, 24(3): 730-748. [13] 寇蕾蕾, 李应超, 楚志刚, 等. C波段双偏振多普勒天气雷达资料分析及在定量估计降水中的应用研究[J]. 热带气象学报, 2018, 34(4): 460-471. [14] 杜赛, 刘显通, 孙皓霆, 等. 华南一次典型雷暴过程双偏振雷达参量与闪电活动关系研究[J]. 热带气象学报, 2021, 37(3): 427-438. [15] 潘佳文, 魏鸣, 郭丽君, 等. 闽南地区大冰雹超级单体演变的双偏振特征分析[J]. 气象, 2020, 46(12): 1 608-1 620. [16] 刁秀广, 郭飞燕. 2019年8月16日诸城超级单体风暴双偏振参量结构特征分析[J]. 气象学报, 2021, 79(2): 181-195. [17] KUMJIAN M R, RYZHKOV A V. Polarimetric signatures in supercell thunderstorms[J]. J Appl Meteor Climatol, 2008, 47(7): 1 940-1 961. [18] 王洪, 吴乃庚, 万齐林, 等. 一次华南超级单体风暴的S波段偏振雷达观测分析[J]. 气象学报, 2018, 76(1): 92-103. [19] 崔梦雪, 张晗昀, 张伟, 等. 闽南一次超级单体风暴双偏振特征分析[J]. 海峡科学, 2020(4): 3-10. [20] 刘黎平, 胡志群, 吴翀, 等. 双线偏振雷达和相控阵天气雷达技术的发展和应用[J]. 气象科技进展, 2016, 6(3): 28-33. [21] ZRNIC D S, KIMPEL J F, FORSYTH D E, et al. Agile-beam phased array radar for weather observations[J]. Bull Amer Meteor Soc, 2007, 88(11): 1 753-1 766. [22] BLUESTEIN H B, FRENCH M M, POPSTEFANIJA I, et al. A mobile, phased-array Doppler radar for the study of severe convective storms[J]. Bull Amer Meteor Soc, 2010, 91(5): 579-600. [23] 刘黎平, 吴林林, 吴翀, 等. X波段相控阵天气雷达对流过程观测外场试验及初步结果分析[J]. 大气科学, 2014, 38(6): 1 079-1 094. [24] 吴翀, 刘黎平, 张志强. S波段相控阵天气雷达与新一代多普勒天气雷达定量对比方法及其初步应用[J]. 气象学报, 2014, 72(2): 390-401. [25] 马舒庆, 陈洪滨, 王国荣, 等. 阵列天气雷达设计与初步实现[J]. 应用气象学报, 2019, 30(1): 1-12. [26] ZHANG Y, BAI L Q, MENG Z Y, et al. Rapid-scan and polarimetric phased-array radar observations of a tornado in the Pearl River Estuary[J]. J Trop Meteor, 2021, 27(1): 81-86. [27] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征[J]. 应用气象学报, 2020, 31(6): 706-718. [28] 毕永恒, 刘锦丽, 段树, 等. X波段双线偏振气象雷达反射率的衰减订正[J]. 大气科学, 2012, 36(3): 495-506. [29] RYZHKOV A V, SCHUUR T J, BURGESS D W, et al. The joint polarization experiment: polarimetric rainfall measurements and hydrometeor classification[J]. Bull Amer Meteor Soc, 2005, 86(6): 809-824. [30] DAWSON D T, MANSELL E R, JUNG Y, et al. Low-Level ZDR signatures in supercell forward flanks: the role of size sorting and Melting of Hail[J]. J Atmos Sci, 2014, 71(1): 276-299. [31] ROMINE G S, BURGESS D W, WILHELMSON R B. A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell[J]. Mon Wea Rev, 2008, 136(8): 2 849-2 870. [32] 张羽, 吴少峰, 李浩文, 等. 广州X波段双偏振相控阵天气雷达数据质量初步分析及应用[J]. 热带气象学报, 2022, 38(1): 23-34. [33] KUMJIAN M R, RYZHKOV A V. Polarimetric signatures in supercell thunderstorms[J]. J Appl Meteor Climatol, 2008, 47(7): 1 940-1 961. [34] BRANDES E A, VIVEKANANDAN J, TUTTLE J D, et al. A study of thunderstorm microphysics with multiparameter radar and aircraft observations[J]. Mon Wea Rev, 1995, 123(11): 3 129-3 143. [35] LONEY M L, ZRNIC D S, STRAKA J M, et al. Enhanced polarimetric radar signatures above the melting level in a supercell storm[J]. J Appl Meteor, 2002, 41(12): 1 179-1 194. [36] WAKIMOTO R M, BRINGI V N. Dual-polarization observations of microbursts associated with intense convection: The 20 july storm during the MIST project[J]. Mon Wea Rev, 1988, 116(8): 1 521-1 539. [37] KUMJIAN M R, KHAIN A P, BENMOSHE N, et al. The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model[J]. J Appl Meteor Climatol, 2014, 53(7): 1 820-1 843. -