ANALYSIS ON THE DIFFERENCE OF HURRICANE BOUNDARY LAYER CHARACTERISTIC HEIGHT BETWEEN NEARSHORE AND OFFSHORE
-
摘要: 使用1998—2016年大西洋40个飓风2 032个GPS下投式探空仪观测数据,以距离海岸线300 km为界分为近海和远洋两组,利用合成分析方法探讨了飓风边界层特征高度的差异。边界层特征高度的定义方法包括最大切向风高度、入流层高度、混合层高度和理查森数法高度。对比分析不同定义方法下近海和远洋边界层高度,结果表明:根据最大切向风和入流层强度定义的边界层高度,近海边界层高度低于远洋边界层高度,且近海边界层高度随径向增加至2倍最大风速半径后趋于稳定;基于混合层定义的边界层高度明显低于动力边界层高度,且近海与远洋混合边界层特征高度无明显差异;近海理查森数边界层高度在最大风速半径内与远洋的无明显差异,而在最大风速半径外略高于远洋的。Abstract: In this study, 2032 GPS dropsondes around 40 hurricanes over Atlantic basin from 1998 to 2016 were used to investigate the difference of boundary layer characteristic height between nearshore and offshore using composite analysis. The defining methods of the characteristic height of the boundary layer include (1) the maximum tangential wind height, (2) the depth of the inflow layer, (3) the depth of the mixed layer and (4) the height of the bulk Richardson number method. Through comparing the boundary layer heights of the nearshore and offshore areas under these different definition methods, we find that the height of nearshore boundary layer is lower than that of the offshore area under the definition methods of (1) and (2), and the height of nearshore boundary layer increases radially to twice as much as the radius of the maximum wind speed before it tends to be stabilized. The height of boundary layer defined by (3) is lower than dynamical boundary layer heights, and there is no significant difference in the characteristic height of mixed boundary layer between nearshore and offshore area. Within the radius of the maximum wind speed, the height of the Richardson number boundary layer defined by (4) in the nearshore area shows no significant difference from that in the offshore, while it is slightly higher than the offshore outside the radius of the maximum wind speed.
-
Key words:
- hurricane boundary layer /
- nearshore and offshore /
- GPS dropsonde
-
表 1 飓风级别、强度与探空仪数量表
飓风级别 强度范围/kt 近海探空仪数量 远洋探空仪数量 总数 TS 34.0~63.9 415 289 704 Cat-1 64.0~82.9 317 198 515 Cat-2 83.0~95.9 232 169 401 Cat-3 96.0~112.9 233 231 464 Cat-4 113.0~136.9 189 238 427 Cat-5 ≥137.0 61 164 225 合计 — 1 447 1 289 2 736 -
[1] ZHANG J A, ROGERS R F, NOLAN D S, et al. On the characteristic height scales of the hurricane boundary layer[J]. Mon Wea Rev, 2011, 139(8): 2 523-2 535. [2] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6 929): 279-283. [3] EMANUEL K A. An air-sea interaction theory for tropical cyclones. Part Ⅰ: Steady-state maintenance[J]. J Atmos Sci, 1986, 43(6): 585-605. [4] POWELL M D. Boundary layer structure and dynamics in outer hurricane rainbands. Part Ⅱ: Downdraft modification and mixed layer recovery[J]. Mon Wea Rev, 1990, 118(4): 918-938. [5] BRYAN G H, ROTUNOO R. The maximum intensity of tropical cyclones in axisymmetric numerical model simulations[J]. Mon Wea Rev, 2009, 137(6): 1 770-1 789. [6] SMITH R K, MONTGOMERY M T, SANG N V. Tropical cyclone spin-up revisited[J]. Quart J Roy Meteor Soc, 2009, 135(642): 1 321-1 335. [7] MOSS M S, MERCERET F J. A note on several low-layer features of hurricane Eloise (1975)[J]. Mon Wea Rev, 1976, 104(7): 967-971. [8] TROEN I B, MAHRT L. A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation[J]. Bound -Layer Meteor, 1986, 37(1): 129-148. [9] 廖菲, 邓华, 李旭. 基于风廓线雷达的广东登陆台风边界层高度特征研究[J]. 大气科学, 2017, 41(5): 949-959. [10] 蔡晓冬, 明杰, 王元. 基于下投式探空仪资料的超强台风蔷薇(2008)动力和热力结构特征分析[J]. 地球物理学报, 2019, 62(3): 825-835. [11] MING J, ZHANG J A, ROGERS R F. Typhoon kinematic and thermodynamic boundary layer structure from dropsonde composites[J]. J Geophys Res, 2015, 120(8): 3 158-3 172. [12] 乔梁, 张强, 岳平, 等. 由非季风区向季风区过渡过程中大气边界层结构的变化分析[J]. 大气科学, 2019, 43(2): 251-265. [13] TANG J, ZHANG J A, KIEU C, et al. Sensitivity of hurricane intensity and structure to two types of planetary boundary layer parameterization schemes in idealized HWRF simulations[J]. TCRR, 2018, 7(4): 201-211. [14] SMITH R K, VOGL S. A simple model of the hurricane boundary layer revisited[J]. Quart J Roy Meteor Soc, 2008, 134(631): 337-351. [15] KEOERT J D. Choosing a boundary layer parameterization for tropical cyclone modeling[J]. Mon wea rev, 2012, 140(5): 1 427-1 445. [16] XU W X, JIANG H Y, KANG X B. Rainfall asymmetries of tropical cyclones prior to, during, and after making landfall in south China and southeast United States[J]. Atmos Res, 2014, 139: 18-26. [17] HOCK T F, FRANKLIN J L. The NCAR GPS dropwindsonde[J]. Bull Amer Meteor Soc, 1999, 80(3): 407-420. [18] ANTHES R A, CHANG S W. Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model[J]. J Atmos Sci, 1978, 35(7): 1 240-1 255. [19] ZENG X, BRUNKE M A, ZHOU M, et al. Marine atmospheric boundary layer height over the eastern Pacific: Data analysis and model evaluation[J]. J Climate, 2004, 17(21): 4 159-4 170. [20] KEPERT J D. Slab- and height-resolving models of the tropical cyclone boundary layer. Part Ⅱ: Why the simulations differ[J]. Quart J Roy Meteor Soc, 2010, 136(652): 1 700-1 711. [21] KEPERT J D, SCHWENDIKE J, RAMSAY H. Why is the tropical cyclone boundary layer not"well mixed"?[J]. J Atmos Sci, 2016, 73(3): 957-973. [22] KEPERT J. The dynamics of boundary layer jets within the tropical cyclone core. Part Ⅰ: Linear theory[J]. J Atmos Sci, 2001, 58(17): 2 469-2 484. [23] ZHANG J A, ROGERS R F, TALLAPRAGADA V. Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF[J]. Mon Wea Rev, 2017, 145(4): 1 413-1 426. -