DETECTION AND ANALYSIS OF LIGHTNING ACTIVITIES BASED ON DDW1 TOTAL-FLASH 3D LIGHTNING LOCATION SYSTEM
-
摘要: 2020年12月,广东省ADTD(Advanced TOA and Direction)闪电定位系统升级改造为DDW1全闪三维闪电定位系统,于2021年1月业务运行,使得广东省拥有了闪电三维定位业务观测能力。DDW1闪电定位系统不仅在硬件性能、数据处理、探测效率和定位算法等方面有提高,同时还新增了闪电辐射源的三维定位功能。基于DDW1闪电定位系统观测数据和广州S波段双极化天气雷达资料,分别对广东省2021年闪电时空分布以及一次飑线系统云闪三维分布特征进行分析。分析结果表明,闪电活动主要出现在5—9月,占总数92.9%,闪电活动多发时段为13—18时,占总数53.1%;广东省闪电聚集区分布在地势较低的珠三角和粤西地区,地势高的山地地区闪电活动相对较少;云闪辐射源主要出现在强对流区底部,高度主要分布在1~5 km,占总数61.3%,一定程度上刻画了雷暴云中电荷区的分布情况。全闪定位结果与对应时刻雷达回波具有高度一致性。Abstract: In December 2020, the Advanced TOA and Direction (ADTD) lightning location system in Guangdong Province was upgraded to the DDW1 Total-Flash three-dimensional (3D) lightning location system. The new system was put into operation in January 2021, empowering Guangdong with the ability to identify the 3D location of lightning strikes. The DDW1 lightning location system not only sees improvement in hardware performance, data processing, detection efficiency and positioning algorithm, but also boasts a new function of lightning radiation source 3D positioning. Based on the DDW1 lightning location system and the S-band dual-polarization weather radars in Guangzhou, this paper has conducted a statistical analysis of the spatio-temporal distribution of lightning in Guangdong Province and the characteristics of cloud flash activity during a squall line process, respectively. The analysis shows that lightning activities mainly occur from May to September, accounting for 92.9% of the total, and in a day lightning activities become the most frequent during 13 and 18 o'clock, accounting for 53.1% of the total. They mainly occur in the Pearl River Delta and western Guangdong, where the terrain is low; by contrast, there are relatively fewer lightning activities in the mountainous areas with high terrain. Cloud flash radiation mainly originates from the bottom of the strong convection area, and the height mainly ranges from 1 to 5 km, accounting for about 61.3% of the total. The results of the present study may reflect the distribution of the charge area in thunderstorm clouds. The total-flash location results are highly consistent with radar echo at corresponding moments.
-
Key words:
- lightning detection /
- lightning 3D location /
- DDW1 system /
- data analysis
-
表 1 广东省DDW1定位系统探测性能指标
序号 参数 技术指标 1 闪电类型 云闪、云地闪 2 探测频段 甚低频/低频 3 灵敏度 300 km处5 kA回击电流 4 时间精度 0.1 μs 5 首次回击探测效率 100% 6 继后回击探测效率 62% 7 云闪探测效率 52% -
[1] 郭润霞, 王迎春, 张文龙, 等. 基于VLF/LF三维闪电监测定位系统的北京闪电特诊分析[J]. 热带气象学报, 2018, 34(3): 393-400. [2] 张春燕, 刘霞, 高文俊, 等. 强雷暴天气的闪电和雷达回波特征个例分析[J]. 热带气象学报, 2021, 37(3): 419-426. [3] 周鑫, 张文娟, 张义军, 等. 基于闪电聚类方法的西北太平洋区域雷暴活动特征[J]. 热带气象学报, 2021, 37(3): 490-501. [4] 徐黄飞, 张其林, 杜赛, 等. 新型闪电电场变化测量仪的研究与初步应用[J]. 热带气象学报, 2021, 37(3): 502-511. [5] 杜赛, 刘显通, 孙皓霆, 等. 华南一次典型雷暴过程双偏振雷达参量与闪电活动关系研究[J]. 热带气象学报, 2021, 37(3): 427-438. [6] 陈绿文, 吕伟涛, 张义军, 等. 粤港澳闪电定位系统对高建筑物雷电的探测[J]. 应用气象学报, 2020, 31(2): 165-174. [7] THOMAS R J, KREHBIEL P R, RISON W, et al. Observations of VHF source powers radiated by lightning[J]. Geophys Res Lett, 2001, 28(1): 143-146. [8] PROCTOR D E. A Hyperbolic system for obtaining VHF radio pictures of lightning[J]. J Geophys Res, 1971, 76(6): 1 478-1 489. [9] PROCTOR D E. Lightning flashes with high origins[J]. J Geophys Res, 1997, 102(D2): 1 693-1 706. [10] SMITH D A, HEAVNER M J, JACOBSON A R, et al. A method for determining intracloud lightning and ionospheric heights from VLF/LF electric filed records[J]. Radio Sci, 2004, RS1010. [11] RISON W R, THOMAS R J, KREHBIEL P R, et al. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexcio[J]. Geophys Res Lett, 1999, 26(23): 3 573-3 576. [12] KREHBIEL P R, THOMAS R, RISON W, et al. Lightning mapping observations in central Oklahoma[J]. EOS, 2000, 81(3): 21-25. [13] THOMAS R J, KREHBIEL P R, RISON W, et al. Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma[J]. Geophys Res Lett, 2000, 27(12): 1 703-1 706. [14] UMAN M A, BEASLEY W H, TILLER J A, et al. An unusual lightning flash at Kennedy Space Center[J]. Science, 1978, 201(4 350): 9-16. [15] POEHLER H, LENNON C. Lightning Detection and Ranging(LDAR) system description & performance objectives[J]. NASA Technical Memorandum, 1979, 74106: 86. [16] LHERMITTE R, KREHBIEL P R. Doppler radar and radio observations of thunderstorms[J]. IEEE Trans Geosci Electronics, 1979, 17(4): 162-171. [17] RICHARD P, DELANNOY A, LABAUNE, et al. Results of spatial and temporal characterization of the VHF-UHF radiation of lightning[J]. J Geophys Res, 1986, 91(D1): 1 248-1 260. [18] USHIO T, KAWASAKI Z, OHTA Y, et al. Broad band interferometric measurement of rocket triggered lightning in Japan[J]. Geophys Res Lett, 1997, 24(22): 2 769-2 772. [19] MARDIANA R, KAWASAKI Z. Dependency of VHF broad lightning source mapping on Fourier spectra[J]. Geophys Res Lett, 2000, 27 (18): 2 917-2 920. [20] MORIMOTO T, KAWASAKI Z I, USHIO T. Lightning observations and consideration of positive charge distribution inside thunderclouds using VHF broadband digial interferometry[J]. Atmos Res, 2005, 76(1/4): 445-454. [21] JERAULD J, RAKOV V A, UMAN M A, et al. An evaluation of the performance characteristics of the U. S. National Lightning Detection Network in Florida using rocket-triggered lightning[J]. J Geophys Res, 2005, 110(D19): D19106. [22] BIAGI C J, CUMMINS K L, KEHOE K E, et al. National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003−2004[J]. J Geophys Res, 2007, 112(D5): D05208. [23] SHAO X M, STANLEY M, REGAN A, et al. Total lightning observations with the new and improved Los Alamos Sferic Array (LASA) [J]. J Atmos Oceanic Technol, 2006, 23(10): 1 273-1 288. [24] BETZ H D, SCHMIDT K, LAROCHE P, et al. LINET-An international lightning detection network in Europe[J]. Atmos Res, 2009, 91(2~4): 564-573. [25] HOLLER H, BETZ H D, SCHMIDT K, et al. Lightning characteristics observed by a VLF / LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany[J]. Atmos Chem Phys, 2009, 9(1): 7 795-7 824. [26] DOWDEN R L, HOLZWORTH R H, RODGER C J, et al. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide[J]. IEEE Antennas and Propagation Magazine, 2008, 50(5): 40-60. [27] 王志超, 庞文静, 梁丽, 等. ADTD闪电定位网在北京地区定位效率的自评估[J]. 气象科技, 2018, 46(4): 638-644. [28] 王宇, 郄秀书, 王东方, 等. 北京闪电综合探测网(BLNET): 网络构成与初步定位结果[J]. 大气科学, 2015, 39(3): 571-582. [29] 王东方, 孙竹玲, 袁善锋, 等. 北京多频段闪电三维定位网及一次雷暴过程的闪电时空演化特征[J]. 大气科学, 2020, 44(4): 851-864. [30] 王东方, 郄秀书, 袁善锋, 等. 北京地区的闪电时空分布特征及不同强度雷暴的贡献[J]. 大气科学, 2020, 44(2): 225-238. [31] 王东方, 郄秀书, 袁铁, 等. 利用快电场变化脉冲定位进行云闪初始放电过程的研究[J]. 气象学报, 2009, 67(1): 165-174. [32] FAN X P, ZHANG Y J, ZHENG D, et al. A new method of three-dimensional location for low-frequency electric field detection array[J]. J Geophys Res, 2018, 123(16): 8 792-8 812. [33] 李庆申, 陈宇涵, 张阳, 等. DDW1闪电定位系统及性能评估[J]. 气象科技, 2020, 48(6): 788-794. [34] 梁丽, 马舒庆, 庞文静, 等. 云闪测向定位算法[J]. 应用气象学报, 2015, 26(5): 618-625. [35] 梁丽, 雷勇, 张帅弛, 等. 基于DBSCAN与网格搜索的雷电定位算法[J]. 应用气象学报, 2019, 30(3): 267-278. [36] 费蕾蕾, 毕新慧, 刘永林, 等. 香港地闪时空分布特征及其影响因素[J]. 热带气象学报, 2017, 33(5): 617-626. [37] 成勤, 张科杰, 刘俊, 等. 一次特大暴雨过程三维和二位系统闪电特征对比分析[J]. 热带气象学报, 2021, 37(3): 396-408. [38] 刘恒毅, 董万胜, 徐良韬, 等. 闪电起始过程时空特征的宽带干涉仪三维观测[J]. 应用气象学报, 2016, 27(1): 16-24. [39] 刘恒毅, 董万胜, 张义军. 云闪K过程的三维时空特征[J]. 应用气象学报, 2017, 28(6): 700-713. -