CLIMATIC CHARACTERISTICS AND CAUSES OF HAIL IN GUIZHOU: 1961—2021
-
摘要: 选取1961—2021年贵州省84个国家站冰雹观测资料,运用回归分析、小波分析和EOF分解对贵州省近61年冰雹发生的时空分布特征进行研究,并通过分析大气环流和外强迫因子的异常,探究冰雹日数极端年份的成因。结果表明:贵州省一年四季均有冰雹,春季最多,秋季最少。冰雹出现时间以14—01时的午后到夜间为主。贵州省冰雹的发生有14年和8年的周期,1995年后主周期变短,出现频次减少。冰雹主要分布在中西部,年均冰雹频次与海拔呈正相关,EOF分解后,贵州省冰雹空间分布前两个模态在空间向量场上呈现为全省一致型和东西相反型,受大尺度环流及地形影响产生的冰雹为减少的趋势,1991年后贵州省中部以东受地形激发及局地对流产生的冰雹有略微上升的趋势,但其方差贡献率较小,因此贵州省整体冰雹日数为下降趋势。通过极端冰雹年的大气环流和外强迫因子的分析,发现La Niña年海温的异常激发了热带西北太平洋异常气旋,导致该地区副高偏弱,进一步影响到贵州及其周边的位势高度有负异常,不利于贵州省冰雹的发生,对应贵州的少雹年,而El Niño年则相反,对应贵州省的多雹年。Abstract: Based on the hail observational data from 84 national stations in Guizhou Province during 1961 —2021, the temporal and spatial distribution of hail in Guizhou in recent 61 years were studied by using regression analysis, wavelet analysis and EOF decomposition. Anomalies of atmospheric circulation and external forcing factors were also adopted to analyze hail frequency. The results showed that hail can occur all year long in Guizhou with most in spring and least in autumn. On a daily scale, hail mainly occurred in the afternoon and evening from 14: 00 to 01: 00. The occurrence of hail in Guizhou showed oscillation cycles of 14 years and eight years, and the trend changed around 1995 with shorter oscillation and lower frequency. The central and western regions were more hail-prone, and the annual average hail frequency was positively correlated with altitude. After EOF decomposition, the first two modes of spatial distribution of hail in Guizhou were provincial consistent and east-west opposite in the spatial vector field. Hail caused by large-scale circulation and topography tended to decrease. After 1991, hail induced by terrain and local convection in the east of central Guizhou slightly increased, but its variance contribution rate was small. Therefore, the overall number of hail days in Guizhou exhibited a downward trend. Through the analysis of atmospheric circulation and external forcing factors, it was found that the anomaly of sea surface temperature in a La Niña year triggered abnormal cyclones in the tropical northwest Pacific, leading to a weaker Subtropical High in the region and further affected negative height anomalies in Guizhou and its surrounding areas, which was favorable for the occurrence of hail in Guizhou. By contrast, the number of hail events in Guizhou decreased in El Niño years.
-
表 1 极端冰雹日数和年份
多雹年 少雹年 年份 冰雹日数 年份 冰雹日数 1963 53 1996 19 1969 54 1999 14 1979 54 2010 14 1980 51 2011 19 1982 59 2012 14 1983 52 2017 15 表 2 不同季节及月份冰雹频率(频次)
季节 月份 月频率(频次) 季频率(频次) 季节 月份 月频率(频次) 季频率(频次) 春 3 19% (413) 65.4%(1 418) 秋 9 1.2%(25) 7.1%(153) 4 27.4%(593) 10 3%(66) 5 19%(412) 11 2.9%(62) 夏 6 4.3%(93) 12.2%(265) 冬 12 1.4%(31) 15.3%(332) 7 3.6%(78) 1 3.9%(84) 8 4.3%(94) 2 10%(217) 表 3 年冰雹日数EOF分解的前10个特征向量贡献率
模态 特征值 方差贡献率 累计方差贡献率 特征根误差下限 特征根误差上限 1 23.530 0.182 0.182 19.899 27.161 2 8.918 0.069 0.251 7.542 10.294 3 6.582 0.051 0.302 5.566 7.597 4 6.531 0.051 0.352 5.523 7.539 5 5.965 0.046 0.399 5.045 6.886 6 5.262 0.041 0.439 4.450 6.074 7 5.050 0.039 0.478 4.271 5.830 8 4.662 0.036 0.514 3.943 5.381 9 4.540 0.035 0.549 3.840 5.241 10 3.850 0.030 0.579 3.256 4.444 -
[1] KNIGHT C A, KNIGHT N C. Hail stones[J]. Scientific American, 1971, 224(4): 96-103. [2] CHANGNON S A, CHANGNON D. Long-term fluctuations in hail incidences in the United States[J]. J Climate, 2000, 13(3): 658-664. [3] 矫梅燕. 中国气象年鉴[M]. 北京: 气象出版社, 2021: 614-660. [4] 王静爱, 史培军, 刘颖慧, 等. 中国1990~1996年冰雹灾害及其时空动态分析[J]. 自然灾害学报, 1999, 8(3): 46-53. [5] ZHANG C X, ZHANG Q H, WANG Y Q. Climatology of Hail in China: 1961-2005[J]. J Appl Meteor, 2008, 47(3): 795-804. [6] BURCEA S, CICĂ R, BOJARIU R. Hail climatology and trends in Romania: 1961-2014[J]. Mon Wea Rev, 2016, 144(11): 4 289-4 299. [7] LI X F, ZHANG Q H, ZOU T, et al. Climatology of Hail Frequency and Size in China 1980-2015[J]. J Appl Meteor, 2018, 57(4): 875-887. [8] 徐桂玉, 杨修群. 中国南方冰雹气候特征的三维EOF分析[J]. 热带气象学报, 2002, 17(4): 383-392. [9] 张芳华, 高辉. 中国冰雹日数的时空分布特征[J]. 南京气象学院学报, 2008, 26(5): 687-693. [10] 符琳, 李维京, 张培群, 等. 近50年我国冰雹年代际变化及北方冰雹趋势的成因分析[J]. 气象, 2011, 38(6): 669-676. [11] 李博勇, 胡志群, 郑佳锋, 等. 利用贝叶斯方法改进华南地区冰雹识别效果[J]. 热带气象学报, 2021, 37(1): 112-125. [12] 付烨, 刘晓莉, 丁伟. 一次冰雹过程及雹云物理结构的数值模拟研究[J]. 热带气象学报, 2016, 32(4): 546-557. [13] 孙伟, 曹舒娅, 沈建. 基于多源探测资料的物4.12". 12"测资料的物[J]. 热带气象学报, 2021, 37(2): 218-232. [14] 郑永光, 宋敏敏. 冷涡影响中国对流性大风与冰雹的分布特征[J]. 热带气象学报, 2021, 37(5-6): 710-720. [15] 李琼, 尚程鹏, 唐林, 等. 1968-2017年湖南省冰雹时空分布特征[J]. 气象与环境科学, 2022, 45(1): 22-29. [16] 高倩楠, 孙鹏飞, 张苗苗, 等. 黑龙江省冰雹的时空分布特征[J]. 黑龙江气象, 2022, 39(2): 6-9. [17] 林春英, 王启花, 李红梅, 等. 青海省东部农业区近60a降雹特征及其致灾危险性[J]. 干旱气象, 2022, 40(3): 436-443 [18] 黄钰, 周苑, 罗雄. 贵州中西部地区雹暴及暴雨过程闪电活动特征对比分析[J]. 农业灾害研究, 2020, 10(1): 94-95+97. [19] 张小娟, 陶玥, 刘国强, 等. 一次冰雹天气过程的云系发展演变及云物理特征研究[J]. 气象, 2019, 45(3): 415-425. [20] 刘涛, 王瑾. 一次冰雹天气的数值模拟及地形敏感性试验研究[J]. 中低纬山地气象, 2022, 46(1): 10-18. [21] 曾勇, 张淑霞, 罗雄, 等. 贵州中西部冰雹云闪电活动特征及对降雹指示作用研究[J]. 中低纬山地气象, 2020, 44 (6): 44-50. [22] 彭宇翔, 文继芬, 李皓, 等. 基于决策树模型的贵州降雹识别研究[J]. 中低纬山地气象, 2021, 45(6): 99-101. [23] 张云秋, 唐海, 陈茜茜, 等. 1961-2017年遵义地区冰雹时空分布特征[J]. 中低纬山地气象, 2018, 42(4): 55-59. [24] 李启芬, 曾妮, 蒙军, 等. 安顺市2015-2019年冰雹时空分布特征及雷达临近预警指标研究[J]. 中低纬山地气象, 2022, 46(5): 39-44+75. [25] HE C, LIN A, GU D, et al. Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate[J]. Theor Appl Climatol, 2016, 131(1): 681-691. [26] 陈月娟, 简俊, 周任. ENSO循环各阶段东亚夏季风特征的诊断研究[J]. 高原气象, 2002, 21(5): 441-446. [27] 赵振国. 厄尔尼诺现象对北半球大气环流和中国降水的影响[J]. 大气科学, 1996, 20(4): 422-428.