[1] |
TAO S Y, CHEN L. A review of recent research on East Asian summer monsoon in China[M]. London: Oxford University Press, 1987.
|
[2] |
LAU K M, YANG G J, SHEN S H. Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia[J]. Mon Wea Rev, 1988, 116(1): 18-37.
|
[3] |
何金海, 丁一汇, 陈隆勋. 亚洲季风研究的新进展[M]. 北京: 气象出版社, 1996.
|
[4] |
MAO J, WU G. Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer[J]. Climate Dyn, 2006, 27: 815-830.
|
[5] |
罗亚丽. 极端天气和气候事件的变化[J]. 气候变化研究进展, 2012, 8(2): 90-98.
|
[6] |
赵宗慈, 罗勇, 黄建斌. 极端天气与气候事件受到全球变暖影响吗?[J]. 气候变化研究进展, 2014, 10(5): 388-390.
|
[7] |
LIU B, YAN Y, ZHU C, et al. Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic oscillation[J]. Geophysical Research Letters, 2020, 47(22): e2020GL090342.
|
[8] |
杨梦兮, 刘梅, 柯丹, 等. 2020年江淮地区梅雨异常的成因分析[J]. 暴雨灾害, 2020, 39(6): 555-563.
|
[9] |
赵娴婷, 闵爱荣, 廖移山, 等. 2020年4-10月我国主要暴雨天气过程简述[J]. 暴雨灾害, 2021, 40(6): 675-686.
|
[10] |
赵俊虎, 张涵, 熊开国, 等. 2020年江淮流域超强梅雨年际异常的驱动因子分析[J]. 大气科学, 2021, 45(6): 1 433-1 450.
|
[11] |
CAI Y, CHEN Z, DU Y. The role of Indian Ocean warming on extreme rainfall in central China during early summer 2020: without significant El Niño influence[J]. Climate Dyn, 2022, 59(3-4): 951.
|
[12] |
张顺利, 陶诗言, 张庆云, 等. 长江中下游致洪暴雨的多尺度条件[J]. 科学通报, 2002, 47: 467-467.
|
[13] |
SCREEN J A, SIMMONDS I. Amplified mid-latitude planetary waves favour particular regional weather extremes[J]. Nature Climate Change, 2014, 4: 704-709.
|
[14] |
丁一汇. 论河南"75.8"特大暴雨的研究: 回顾与评述[J]. 气象学报, 2015, 73(3): 411-424.
|
[15] |
姚秀萍, 吴国雄, 赵兵科, 等. 与梅雨锋上低涡降水相伴的干侵入研究[J]. 中国科学, 2007, 37(3): 417-428.
|
[16] |
BROWNING K A, GOLDING B W. Mesoscale aspect of a dry intrusion within a vigorous cyclone[J]. Quart J Roy Meteor Soc, 1995, 121 (523): 463-493.
|
[17] |
MCCALLUM E, CLARK G V. Use of satellite imagery in a marked cyclogenesis on 12 November 1991[J]. Weather, 1992, 46: 241-246.
|
[18] |
黄伟, 陶祖钰. 1991年梅雨期中冷空气活动的个例分析[J]. 大气科学, 1995, 19(3): 375-379.
|
[19] |
陶诗言. 中国之暴雨[M]. 北京: 科学出版社, 1980: 1-225.
|
[20] |
刘芸芸, 丁一汇. 2020年超强梅雨特征及其成因分析[J]. 气象, 2020, 46(11): 1393-1404.
|
[21] |
王永光, 娄德君, 刘芸芸. 2020年长江中下游梅汛期降水异常特征及其成因分析[J]. 暴雨灾害, 2020, 39(6): 549-554.
|
[22] |
高琦, 姚秀萍. 2020年长江中下游梅汛期干冷空气演变特征及其作用分析[J]. 暴雨灾害, 2021, 40(4): 342-351.
|
[23] |
HOSKINS B J, MCINTYRE M E, ROBERTSON A W. On the use and significance of isentropic potential vorticity maps[J]. Quart J Roy Meteor Soc, 1985, 111(470): 877-946.
|
[24] |
杨贵名, 毛冬艳, 姚秀萍. 梅雨期一次黄淮气旋发展的干侵入特征分析[J]. 热带气象学报, 2006, 22(2): 176-183.
|
[25] |
陈碧莹, 闵锦忠. 华北"7·19"暴雨中低涡系统演变及多尺度相互作用机制研究[J]. 热带气象学报, 2020, 36(1): 85-96.
|
[26] |
祝传栋, 陈正洪, 李亚飞, 等. 平流层高位涡侵入对河南" 21·7"极端暴雨的影响[J]. 气象与环境科学, 2022, 45(2): 27-37.
|
[27] |
白涛, 李崇银, 王铁, 等. 干侵入对陕西"2008.07. 21"暴雨过程的影响分析[J]. 高原气象, 2013, 32(2): 345-356.
|
[28] |
TANG C, WU X, ZHANG G, et al. Potential vorticity analysis of quasi-biweekly rainfall events over the Yangtze Basin in summer 2014[J]. Atmospheric and Oceanic Science Letters, 2021, 14(6): 20-27.
|
[29] |
徐海明, 何金海, 周兵". 倾斜"高空急流轴在大暴雨过程中的作用[J]. 南京气象学院学报, 2001, 24(2): 155-161.
|
[30] |
刘会荣, 李崇银. 干侵入对济南"7.18"暴雨的作用[J]. 大气科学, 2010, 34(2): 374-386.
|
[31] |
WU G X, MA T T, LIU Y M, et al. PV-Q perspective of cyclogenesis and vertical velocity development downstream of the Tibetan Plateau[J]. J Geophy Res, 2020, 125(16): e2019JD030912.
|
[32] |
ZHANG G, MAO J, LIU Y, et al. PV perspective of Impacts on downstream extreme rainfall event of a Tibetan Plateau Vortex Collaborating with a Southwest China Vortex[J]. Advances in Atmospheric Sciences, 2021, 38(11): 1 835-1 851.
|
[33] |
HOSKINS B J, PEDDER M, JONES D W. The omega equation and potential vorticity[J]. Quart J Roy Meteor Soc, 2003, 129(595): 3 277-3 303.
|
[34] |
吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1 102-1 111.
|
[35] |
STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System[J]. Bull Amer Meteor Soc, 2015, 96(12): 2 059-2 077.
|
[36] |
ERTEL H. Ein neuer hydrodynamischer wirbelsatz[J]. Meteor Z, 1942, 59: 277-281.
|
[37] |
HOSKINS B J. A potential vorticity view of synoptic development[J]. Meteor Appl, 1997, 4: 325-334.
|
[38] |
ZHANG G, MAO J, WU G, et al. Impact of potential vorticity anomalies around the eastern Tibetan Plateau on quasi-biweekly oscillations of summer rainfall within and south of the Yangtze Basin in 2016[J]. Climate Dyn, 2021, 56(3-4): 813-835.
|
[39] |
BOSART L F, MOORE B J, CORDEIRA J M, et al. Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in october 2007[J]. Mon Wea Rev, 2017, 145(4): 1 245-1 273.
|
[40] |
DAVIS, C A, EMANUEL K A. Potential vorticity diagnostics of cyclogenesis[J]. Mon Wea Rev, 1991, 119(8): 1 929-1 953.
|