Precipitation Characteristics and DSAEF_LTP Model Precipitation Simulation of Typhoons Affecting Yunnan Province
-
摘要: 针对云南地区,利用1960—2019年中国气象局上海台风研究所台风最佳路径资料、国家气象信息中心地面逐日降水资料进行统计分析,研究了影响云南的221个历史台风活动特征和降水特征,并基于登陆台风的动力统计相似集合预报(DSAEF_LTP)模型对2016—2019年的5个目标台风进行模拟,结果显示:(1) 平均每年有3.7个台风影响云南,数量呈现减少趋势;影响季节主要集中在7—9月,其中7—8月最盛;影响期间最大强度以强热带风暴和台风级别为主。影响路径通常为西北行和西行路径,登陆点多集中在海南岛、广东西部和广西沿海,移动到云南的台风较少;(2) 221个影响云南的历史台风中共有119个产生暴雨量级的日降水,台风暴雨平均日降水量比普通暴雨更大。从空间分布来看,云南北部台风暴雨频次相对较高,但极值降水更易发生在云南南部;(3) DSAEF_LTP模型整体预报效果较好,成功模拟出了台风的降水中心,且相对数值模式预报结果具有一定优势,对云南的台风强降水预报有指示意义。
-
关键词:
- 台风 /
- 暴雨特征 /
- DSAEF_LTP模型 /
- 降水模拟 /
- 云南
Abstract: Based on the best track data from the Shanghai Typhoon Institute of China Meteorological Administration for the period 1960-2019 and daily precipitation data from the National Meteorological Information Center, this study investigated the characteristics of 221 historical typhoons affecting Yunnan province. Furthermore, the Dynamical-Statistical-Analog Ensemble Forecast Model for Landfalling Typhoon Precipitation was employed to simulate the precipitation of five target typhoons from 2016 to 2019. The results are as follows. (1) Over the past five decades, 3.7 typhoons have affected Yunnan every year, and typhoons have become less frequent. The peak typhoon season was from July to September, with the highest typhoon activities in July and August. The majority of typhoons that affected Yunnan were strong tropical storms and typhoons. Their tracks were mainly northwest and westbound, with landing locations mostly concentrated along the coast of Hainan Island, western Guangdong and Guangxi. (2) Out of the 221 historical typhoons, 119 produced daily precipitation at the rainstorm level, and the average daily precipitation during typhoon rainstorms exceeded that of ordinary rainstorms. Spatially, the frequency of typhoon-induced rainstorms was relatively higher in northern Yunnan, while extreme precipitation events were more likely to occur in southern Yunnan. (3) The DSAEF_LTP model demonstrated good overall performance, successfully simulating the precipitation center of these typhoons. The model's results exhibited certain advantages over those of numerical models and may facilitate the prediction of strong precipitation associated with typhoons in Yunnan.-
Key words:
- typhoon /
- rainstorm characteristics /
- DSAEF_LTP Model /
- precipitation simulation /
- Yunnan Province
-
表 1 台风样本信息
编号 台风名称 累积降水量/mm 日最大降水量/mm 1608 DIANMU(电母) 76.2 51.7 1713 HATO(天鸽) 189.9 95.7 1809 SON-TINH(山神) 123.1 105.2 1904 MUN(木恩) 192 192 1907 WIPHA(韦帕) 117.1 88.8 表 2 DSAEF_LTP模型参数表
参数名称 取值方式 参数取值个数 起报时刻(P1) LTC第一次在陆地上产生降水当天12:00 UTC及00:00 UTC以及前一天的12:00UTC 3 相似区域(P2) TSAI参数之一,长方形,其对角点分别为降水起报时刻前0、12、24、36或48 h的台风位置,和最大预报时刻前0、6或12 h的台风位置,由此可确定15个相似区域;将起报时刻的台风位置定为长方形东南顶点,作边长为2 000 km正方形为第16种相似区域;再取此相似区域与第一种相似区域西南角的中点为点a,东北角的中点为点b,以a、b为对角点的矩形作为第17种相似区域;将第16种相似区域整体移动,直至其东南角到达a点作为第18种相似区域,其东北角到达b点作为第19种相似区域,其西北角到达第17种相似区域的西北角作为第20种相似区域[42] 20 纬度极值点 TSAI参数之一,可取值0.1、0.2和0.3 3 分割度阈值(P3) 重叠度阈值(P4) TSAI参数之一,可取值0.9、0.8、……和0.4 6 登陆季节相似(P5) 代表 1—12月、5—11月、7—9月、和目标台风同月和相差15天之内登陆 5 强度相似(P6) 强度指标4类:(陆地)台风降水过程第一天的平均与最大强度(风速)、降水过程平均与最大强度
强度相似取值有5种:所有级别、同级别及以上、同级别及以下、仅同级、最大可差1个级别4×5 被集合的最佳相似台风个数(P7) 可取值1~10个 10 集合预报方案(P8) 平均值、最大值、最优百分位方法、概率匹配平均、等差权重集合平均、基于TSAI指数的非等差权重集合平均 6 方案总数 3×20×3×6×5×4×5×10×6=6 480 000 -
[1] 陈联寿, 许映龙. 中国台风特大暴雨综述[J]. 气象与环境科学, 2017, 40(1): 3-10. [2] 徐舒扬, 周德丽, 苗绍慧, 等. 台风"威马逊"造成云南强降水灾害天气分析[J]. 灾害学, 2016, 31(4): 229-234. [3] 马涛, 胡勇, 杨琳晗, 等. 三个登陆台风造成云南灾害的天气成因研究[J]. 灾害学, 2020, 35(4): 113-120. [4] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650. [5] 谢彦君, 任福民, 李国平, 等. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108. [6] 何光碧, 曾波. 台风活动及其与中国西部降水特征分析[J]. 气象科技, 2020, 48(5): 695-703. [7] 张可, 方娟. 西北太平洋台风群发事件年代际变化特征分析[J]. 气象科学, 2021, 41(5): 584-596. [8] 王杰, 王洁, 代金圆, 等. 1977—2018年中国台风统计特征分析[J]. 海洋湖沼通报, 2021, 43(6): 28-33. [9] 刘颖婧, 陈永平, 甘敏, 等. 1951—2016年影响我国热带气旋的强度变化特征及其与ENSO的关系[J]. 应用海洋学学报, 2018, 37(3): 301-312. [10] 罗小莉, 姚才, 谭金凯. 登陆华南台风的频数及强度变化特征分析[J]. 海洋预报, 2018, 35(4): 58-67. [11] 宿海良, 袁雷武, 王猛, 等. 1949—2019年登陆中国的热带气旋特征及致灾分析[J]. 应用海洋学学报, 2021, 40(3): 382-387. [12] 钟剑, 周庆, 顾沈旦, 等. 西北太平洋热带气旋生成在不同最佳路径集资料中的差异特征分析[J]. 海洋预报, 2022, 39(3): 37-46. [13] 江文, 王东海, 张春燕, 等. 近70年不同路径的南海热带气旋的统计特征[J]. 热带气象学报, 2022, 38(3): 433-443. [14] 刘通易, 吴立广, 张娇艳, 等. 1965—2010年7—9月影响中国的热带气旋降水变化趋势分析[J]. 气象学报, 2013, 71(1): 63-75. [15] 王咏梅, 任福民, 李维京, 等. 中国台风降水的气候特征[J]. 热带气象学报, 2008, 24(3): 233-238. [16] 翁永元, 雷小途, 景元书, 等. 全国热带气旋降水量的初步气候分析[J]. 气象与减灾研究, 2012, 35(1): 47-53. [17] 郭荣芬, 肖子牛, 李英. 西行热带气旋影响云南降水的统计特征[J]. 热带气象学报, 2010, 26(6): 680-686. [18] 董美莹, 陈联寿, 郑沛群, 等. 登陆热带气旋暴雨突然增幅和特大暴雨之研究进展[J]. 热带气象学报, 2009, 25(4): 495-502. [19] 郭荣芬, 肖子牛, 陈小华, 等. 两次西行热带气旋影响云南降水对比分析[J]. 应用气象学报, 2010, 21(3): 317-328. [20] 董美莹, 陈联寿, 李英, 等. 登陆热带气旋降水增幅的合成诊断分析[J]. 气象学报, 2011, 69(6): 964-977. [21] 王坚红, 姜云雁, 崔晓鹏, 等. 1956—2012年浙闽登陆热带气旋降水精细化观测统计分析[J]. 大气科学, 2018, 42(1): 16-32. [22] 何光碧, 肖玉华, 师锐. 一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析[J]. 高原气象, 2019, 38(5): 1 004-1 016. [23] 赵琳娜, 白雪梅, 邢程, 等. 中国东南地区夏季台风小时降水概率分布特征[J]. 暴雨灾害, 2017, 36(2): 97-107. [24] 周宇, 凌芬曼, 施晨晓. 近60年永兴岛热带气旋降水的气候特征分析[J]. 气象科技, 2021, 49(1): 69-76. [25] ZHU L, WAN Q L, SHEN X Y, et al. Prediction and predictability of high-impact western Pacific landfalling tropical cyclone Vicente (2012) through convection-permitting ensemble assimilation of Doppler radar velocity[J]. Mon Wea Rev, 2016, 144(1): 21-43. [26] KUVAR S S, BHISHMA T. Impact of data assimilation and air-sea flux parameterization schemes on the prediction of cyclone Phailin over the Bay of Bengal using the WRF‐ARW model[J]. Meteor Appl, 2019, 26(1): 36-48. [27] WANG J, XU Y, YANG L, et al. Data assimilation of high-resolution satellite rainfall product improves rainfall simulation associated with landfalling tropical cyclones in the Yangtze River delta[J]. Remote Sens, 2020, 12(2): 276. [28] YU X, PARK S K, LEE Y H, et al. Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization[J]. Scientific Online Letters on the Atmosphere Sola, 2013, 9(4): 36-39. [29] 徐道生, 陈子通, 钟水新, 等. 对流参数化与微物理过程的耦合及其对台风预报的影响研究[J]. 气象学报, 2014, 72(2): 337-349. [30] HSIAO L F, YANG M J, LEE C S, et al. Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan[J]. J Hydrol, 2013, 506: 55-68. [31] HONG J S, FONG C T, HSIAO L F, et al. Ensemble typhoon quantitative precipitation forecasts model in Taiwan[J]. Wea Forecasting, 2015, 30(1): 217-237. [32] 任福民, 向纯怡. 登陆热带气旋降水预报研究回顾与展望[J]. 海洋气象学报, 2017, 37(4): 8-18. [33] MARKS F D, KAPPLER G, DEMARIA M. Development of a tropical cyclone rainfall climatology and persistence (RCLIPER) model[C]. San Diego: Preprints, 25th Conference on Hurricanes and Tropical Meteorology, 2002: 327-328. [34] LEE C S, HUANG L R, SHEN H S, et al. A climatology model for forecasting typhoon rainfall in Taiwan[J]. Nat Hazards, 2006, 37(1): 87-105. [35] LONFAT M, ROGERS R, MARCHOK T, et al. A parametric model for predicting hurricane rainfall[J]. Mon Wea Rev, 2007, 135(9): 3 086-3 097. [36] KIDDER S Q, KUSSELSON S J, KNAFF J A, et al. The tropical rainfall potential (TRaP) technique. Part I: Description and examples[J]. Wea Forecasting, 2005, 20(4): 456-464. [37] LIU C C. The influence of terrain on the tropical rainfall potential technique in Taiwan[J]. Wea Forecasting, 2009, 24(3): 785-799. [38] EBERT E E, TURK M, KUSSELSON S J, et al. Ensemble tropical rainfall potential (eTRaP) forecasts[J]. Wea Forecasting, 2011, 26(2): 213-224. [39] 李博, 赵思雄. 用SMAT建立台风暴雨预报模型的试验研究[J]. 气象, 2009, 35(6): 3-12. [40] 钟元, 余晖, 滕卫平, 等. 热带气旋定量降水预报的动力相似方案[J]. 应用气象学报, 2009, 20(1): 17-27. [41] REN F M, DING C, ZHANG D L, et al. A Dynamical-Statistical-Analog Ensemble Forecast Model: theory and an application to heavy rainfall forecasts of landfalling tropical cyclones[J]. Mon Wea Rev, 2020, 148(4): 1 503-1 517. [42] JIA L, JIA Z, REN F, et al. Introducing TC intensity into the DSAEF_LTP model and simulating precipitation of super-typhoon Lekima (2019)[J]. Quart J Roy Meteor Soc, 2020(12): 1-15. [43] DING C, REN F, LIU Y, et al. Improvement in the forecasting of heavy rainfall over South China in the DSAEF_LTP model by introducing the intensity of the tropical cyclone[J]. Wea Forecasting, 2020, 35(5): 1 967-1 980. [44] JIA L, REN F, DING C, et al. Improvement of the ensemble methods in the Dynamical-Statistical-Analog Ensemble Forecast Model for landfalling typhoon precipitation[J]. J Meteor Soc Japan, 2022, 100(3): 575-592. [45] MA Y Q, REN F M, JIA L, et al. Experiments with the improved ynamical-Statistical-Analog Ensemble Forecast model for Landfalling Typhoon Precipitation over South China[J]. Journal of Tropical Meteorology, 2022, 28(2): 139-153. [46] QIN S, JIA L, DING C C, et al. Experiments of DSAEF_LTP model with two improved parameters for accumulated precipitation of landfalling tropical cyclones over Southeast China[J]. Journal of Tropical Meteorology, 2022, 28(3): 286-296. [47] SU Z Z, MA Y Q, JIA L, et al. Application of the improved dynamical-Statistical-Analog ensemble forecast model for landfalling typhoon precipitation in Fujian province[J]. Front Earth Sci, 2023. [48] 任福民, BYRON G, DAVID E. 一种识别热带气旋降水的数值方法[J]. 热带气象学报, 2001, 17(3): 308-313. [49] 王咏梅, 任福民, 王小玲, 等. 中国台风降水分离客观方法的改进研究[J]. 气象, 2006, 32(3): 6-10. [50] REN F M, WANG M Y, WANG L X, et al. Estimating tropical cyclone precipitation from station observations[J]. Adv Atmos Sci, 2007, 24 (4): 700-711. [51] YING M, ZHANG W, YU H et al. An overview of the China Meteorological Administration tropical cyclone database[J]. J Atmos Oceanic Technol, 2014, 31(2): 287-301. [52] LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Adv Atmos Sci, 2021, 38(4): 690-699. [53] REN F M, QIU W Y, JIANG X L, et al. An objective track similarity index and its preliminary application to predicting precipitation of landfalling tropical cyclones[J]. Wea Forecasting, 2018, 33(6): 1 725-1 742.