Causes and Numerical Simulation of Heavy Rainfall in Eastern China Triggered by Residual Circulation of Typhoon"Chaba"
-
摘要: 台风“暹芭”不仅是2022年首个登陆中国的台风,也是自2015年台风“彩虹”以来登陆粤西的最强台风,其登陆后减弱的残余环流不断北移,深入内陆与中纬度西风槽相结合,给我国东部地区带来了影响范围广且持续性强的暴雨过程,为了研究引起这种罕见天气过程的影响因子,基于区域中尺度预报系统CMA-MESO (China Meteorological Administration Mesoscale Model)5.1版本对台风“暹芭”残余环流北上过程共设计6组试验进行数值模拟和诊断分析。结果表明:台风“暹芭”东西两侧的南亚高压和副热带高压两个反气旋有利于低压环流北上,在我国东部广阔平原和丘陵的地形条件下,槽前西南气流不断引导其快速向东北方向移动;台风“暹芭”进入渤海后,受槽后干冷空气影响,冷空气入侵环流底部,斜压性增强,暖湿气流显著抬升,对流不稳定结构进一步增强;同时有来自南海的深厚西南暖湿气流和台风“艾利”外围源源不断的水汽输送,在地形、动热力和水汽条件的共同作用下,台风“暹芭”残余环流在我国东部引发大暴雨过程。Abstract: Typhoon Chaba was not only the first typhoon to make landfall in China in 2022, but also the most potent to hit western Guangdong since Typhoon Mujigae in 2015. Its residual circulation, after landfall and subsequent weakening, continued to move northward, penetrate deep into the Chinese mainland and merge with the mid-latitude westerly trough. This resulted in a widespread, intense, and persistent rainstorm in eastern China. To investigate the factors influencing this unusual weather event, the present study designed six sets of experiments using the regional mesoscale forecast system CMA-MESO version 5.1 to simulate and diagnose the northward progression of Chaba's residual circulation. The results showed that the two anticyclonic circulations of South Asian high pressure and subtropical high pressure on the east and west sides of Chaba were conducive to the northward movement of the low-pressure circulation. Under the influence of the broad plains and hills in eastern China, the southwestern airflow ahead of the trough consistently directed it towards the northeast. After Chaba entered the Bohai Sea, it was affected by the dry, cold air following the trough. This led to the invasion of cold air at the base of the circulation, enhancing baroclinicity, significantly lifting the warm, humid airflow, and further intensifying convective instability. At the same time, there were deep, warm, and humid southwestern airflow from the South China Sea and continuous water vapor transport from the periphery of Typhoon Aere. Under the combined influence of topography, dynamic and thermal forces, and water vapor conditions, the residual circulation of Chaba triggered the heavy rainstorm in eastern China.
-
Key words:
- Typhoon Chaba /
- topography /
- westerly trough /
- water vapor /
- rainstorm
-
-
[1] ZHANG Q, LIU Q F, WU L G. Tropical cyclone damages in China 1983-2006[J]. Bull Amer Meteoro Soc, 2009, 90(4): 489-495. [2] 王尚宏, 汤杰, 雷小途. 登陆过程中台风高层暖心结构演变特征分析[J]. 气象, 2018, 44(5): 612-620. [3] 高晓梅, 白莉娜, 郭蓉, 等. 台风"利奇马"北上锋生导致山东省创纪录暴雨天气学成因分析[J]. 热带气象学报, 2023, 39(2): 145-158. [4] 胡鑫蓉. "黑格比"台风浙沪交界极端降水及物理量特征分析[J]. 热带气象学报, 2023, 39(4): 567-580. [5] LI Q H, LU H C, ZHONG W, et al. Influence of bimodel vertical wind shear on typhoon structure and insensity[J]. Chinese Journal of Geophysics, 2016, 59(5): 587-604. [6] 刘凡, 陈华. 热带气旋"Malakas"与中纬度系统的相互作用及其结构变化[J]. 气象科学, 2019, 39(5): 666-674. [7] 江雨霏, 王咏青, 刘仁强. 台风"Faxai"(1403)低纬变性的结构演变特征分析[J]. 热带气象学报, 2020, 36(2): 232-243. [8] SHI D L, CHEN G H. Modulation of asymmetric inner-core convection on midlevel ventilation leading up to the rapid intensification of Typhoon Lekima (2019)[J]. J Geophys Res Atmos, 2023, 128(7): e37952. [9] 周雪松, 孙兴池. 台风"达维"(1210)非对称性结构及其对风雨分布的影响分析[J]. 海洋气象学报, 2017, 37(4): 58-64. [10] 马梁臣, 刘海峰, 沈柏竹, 等. 2019年台风"利奇马"和"罗莎"引发东北地区暴雨的水汽特征分析[J]. 气象与环境学报, 2023, 39(2): 1- 10. [11] 吴俊杰, 段晶晶, 辛欣, 等. 台风"黑格比"造成浙东北滞后型暴雨成因分析及多模式预报检验[J]. 热带气象学报, 2023, 39(6): 857-871. [12] 陈宏, 杨晓君, 尉英华, 等. 干冷空气入侵台风"海棠"残余低压引发的华北地区大暴雨分析[J]. 暴雨灾害, 2020, 39(3): 241-249. [13] WANG X, ZHANG L F, WANG Y, et al. Influences of the mid-latitude westerly trough on stratospheric gravity waves generated by Typhoon Lekima (2019)[J]. J Geophys Res Atmos, 2021, 126(23): e2021JD035399. [14] 李瑞芬, 郭卫华, 丛春华, 等. 两个相似路径台风途经鲁西南时降水差异的成因分析[J]. 海洋预报, 2022, 39(2): 40-49. [15] 孙莎莎, 陈博宇, 孙军, 等. 台风摩羯(1814)引发山东持续性强降水的阶段性特征及其成因分析[J]. 高原气象, 2023, 42(4): 962-977. [16] 任丽, 王晓雪, 张桂华. 近60年黑龙江省台风暴雨统计及环流特征分析[J]. 热带气象学报, 2023, 39(2): 159-170. [17] 王文波, 李晓利, 赵华, 等. "海棠"残留低压引发鲁中东部暴雨中尺度特征分析[J]. 气象与环境科学, 2021, 44(2): 80-86. [18] 张树民, 吴海英, 陈聪, 等. 不同高度冷空气侵入登陆台风暴雨过程对比分析[J]. 中国农学通报, 2020, 36(17): 108-117. [19] 孙兴池, 吴炜, 孙莎莎. 登陆北上山东台风暴雨非对称分布的成因对比分析[J]. 海洋气象学报, 2019, 39(3): 55-63. [20] LU X, YU H, YING M, et al. Western north pacific tropical cyclone database created by the China Meteorological Administration[J]. Adv Atmos Sci, 2021, 38(4): 690-699. [21] YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. J Atmos Oceanic Technol, 2014, 31(2): 287-301.