INVESTIGATION OF THE IMPACT OF CLOUD INITIALIZATION ON NUMERICAL PREDICTION OF A CONVECTIVE SYSTEM
-
摘要: 基于第二代华东快速更新循环同化预报模式系统,针对2015年4月28日华东强对流天气,分析了云初始化对强对流数值预报的作用和影响。有无云初始化试验对比结果表明,在循环系统中使用云初始化,能够显著提高0~6 h的降水预报评分,强降水的位置预报更接近实况。云初始化能较好地改善初始场水凝物的质量分布,提供较准确的相关对流系统的初始信息,改进强对流区域内水凝物的预报效果,有效避免了模式初始阶段的降水滞后现象,缩短了模式由于初始微物理信息缺失引起的“spin-up”时间。而积分6 h以后的结果与无云初始化的结果差别不大。Abstract: Using the second generation of SMS-WARR Shanghai Meteorological Service-WRF ADAS Rapid Refresh System, prediction of a severe convective event in East China is analyzed with the focus on the impact of cloud initialization. Comparison between the prediction results from the experiments with and without cloud initialization shows that the forecast using the cloud initialization can greatly increase the TS score of 0~6 hour rainfall, and the position of the forecasted precipitation is closer to that of the observation. Further analysis indicates that cloud initialization can significantly improve the initial fields of hydrometeors, provide more accurate information of the convection system, and produce better forecasts of hydrometeors and vertical velocity over the severe convection area. Moreover, cloud initiation largely avoids the delay of precipitation occurrence during the early stage and shortens the "spin-up" time due to the lack of the initial microphysical information. However, results with and without the cloud initialization become quite similar to each other when the integration time period exceeds 6 hours.
-
Key words:
- weather forecast /
- forecast method /
- cloud initialization /
- rapid refresh
-
表 1 SMS-WARRV2.0模式主要参数
模式参数 SMS-WARRV2.0 中心位置 119 °E,30 °N 水平分辨率/km 3 水平格点数 793×853 垂直层次 51 冷启动时间 02 起报频次 每小时一次 预报时效 12 h 模式系统 WRF3.5.1 同化系统 ADAS5.3.3 背景场及边界条件 SMS-WARMSV2.0 20时 边界条件更新 3 h 数字滤波 无 微物理过程参数化 Thompson[22] 长波福射参数化 RRTMG[23] 短波福射参数化 RRTMG 陆面过程参数化 Noah[24] 地表过程参数化 Monin-Obukhov (Janjic Eta) [25] 边界层参数 MYJ[26-27] 积云对流参数化方案 无 -
[1] ALBERS S C, MCGINLEY J A, BIRKENHEUER D L, et al. The local analysis and prediction system(LAPS): Analyses of clouds, precipitation, and temperature[J]. Wea Forec, 1996, 11(3): 273-287. [2] ZHANG J, CARR F H, BREWSTER K. ADAS cloud analysis[C]//12th Conf. on Numerical Weather Prediction. Phoenix: Amer Meteor Soc, 1998: 185-188. [3] 龚建东.同化技术:数值天气预报突破的关键——以欧洲中期天气预报中心同化技术演进为例[J].气象科技进展, 2013, 3(3): 6-13. [4] 朱立娟. GRAPES短临预报的云初始场形成与雷达VAD质控的关键技术研究[D]. 北京: 中国气象科学研究院, 2012: 145. [5] XUE M, WANG D H, GAO J D, et al. The advanced regional prediction system(ARPS), storm-scale numerical weather prediction and data assimilation[J]. Meteor Atmos Phys, 2003, 82(1): 139-170. [6] HU M, XUE M, BREWSTER K. 3DVAR and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the Fort Worth, Texas, tornadic thunderstorms, Part Ⅰ: Cloud analysis and its impact[J]. Mon Wea Rev, 2006, 134(2): 675-698. [7] WEYGANDT S S, BENJAMIN S G, DEVENYI D, et al. Cloud and hydrometeor analysis using METAR, radar, and satellite data within the RUC/Rapid-Refresh model//[C]12th Conference on Aviation Rangeand Aerospace Meteorology. Atlanta: Amer Meteor Soc, 2006: 5. 3. [8] HU M, WEYGANDT S, XUE M, et al. Development and testing of a new cloud analysis package using radar, satellite, and surface cloud observations within GSI for initializing rapid refresh[C]//22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction. Park City: Amer Meteor Soc, 2007: 2. 5. [9] 屈右铭, 陆维松, 蔡荣辉, 等. GRAPES-Meso云分析系统的设计与试验[J].气象, 2010, 36(10): 37-45. [10] 王洪, 王东海, 万齐林.多普勒雷达资料同化在"普勒雷达资北京特大暴雨个例中的应用[J].气象学报, 2015, 73(4): 679-696. [11] BENJAMIN S G, NYI D, WEYGANDT S S, et al. An hourly assimilation/ forecast cycle: The RUC[J]. Mon Wea Rev, 2004, 132(2): 495-518. [12] ALEXANDER C R, WEYGANDT S, SMIRNOVA T, et al. High resolution rapid refresh(HRRR): Recent enhancements and evaluation during the 2010 convective season[C]//25th Conf. on Severe Local Storms. Denver: Amer Meteor Soc, 2010: 9. 2. [13] 陈子通, 黄燕燕, 万齐林, 等.快速更新循环同化预报系统的汛期试验与分析[J].热带气象学报, 2010, 26(1): 49-54. [14] 陈敏, 范水勇, 郑作芳, 等.基于BJ-RUC系统的临近探空及其对强对流发生潜势预报的指示性能初探[J].气象学报, 2011, 69(1): 181- 194. [15] 王叶红, 彭菊香, 公颖, 等. AREM-RUC 3h快速更新同化预报系统的建立与实时预报对比检验[J].暴雨灾害, 2011, 30(4): 296-304. [16] 徐枝芳, 郝民, 朱立娟, 等. GRAPES_RAFS系统研发[J].气象, 2013, 39(4): 466-477. [17] 陈葆德, 王晓峰, 李泓, 等.快速更新同化预报的关键技术综述[J].气象科技进展, 2013, 3(2): 29-35. [18] 王晓峰, 王平, 张蕾, 等.上海"7?31"局地强对流快速更新同化数值模拟研究[J].高原气象, 2015, 24(1): 124-136. [19] 王瑾, 刘黎平. CINRAD/CD雷达反射率因子同化对中尺度数值模式云微物理场调整的分析[J].高原气象, 2009, 28(1): 173-185. [20] 徐广阔, 孙建华, 赵思雄.基于雷达资料同化的2003年7月一次暴雨过程的数值模拟及分析[J].热带气象学报, 2009, 25(4): 427-434. [21] 张艳霞, 蒙伟光, 张诚忠, 等. LAPS云分析中卫星资料的应用及对GRAPES模式短时预报的影响[J].热带气象学报, 2015, 31(5): 599- 607. [22] THOMPSON G, RASMUSSEN R M, MANNING K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme, Part Ⅰ: Description and sensitivity analysis[J]. Mon Wea Rev, 2004, 132(12): 5 095-5 115. [23] IACONO M J, DELAMERE J S, MLAWER E J, et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models[J]. J Geophys Res, 2008, 113: D13103. [24] TEWARI M, CHEN F, WANG W, et al. Implementation and verification of the unified NOAH land surface model in the WRF model[C]//20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. 2004: 11-15. [25] MONIN A S, OBUKHOV A M. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Geophysics Institute, USSR Academy of Science, 1954, 24(151): 163-187. [26] MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Rev Geoph, 1982, 20(4): 851- 875. [27] 陈杨瑞雪, 罗亚丽.不同边界层参数化方案和陆面过程参数化方案对一次梅雨锋暴雨显式对流模拟的影响分析[J].热带气象学报, 2016, 32(5): 656-667. [28] KESSLER E. On the distribution and continuity of water substance in atmospheric circulations[J]. Meteor Monogr, 1969, 32(10): 84. [29] BAO J W, MICHELSON S A, GRELL E D. Pathways to the production of precipitating hydrometeors and tropical cyclone development[J]. Mon Wea Rev, 2016, 144: 2 395-2 420. [30] 付桦, 刘晓莉, 丁伟.一次冰雹过程及雹云物理结构的数值模拟研究[J].热带气象学报, 2016, 32(4): 546-557. -