ANALYSIS OF ATMOSPHERIC CONDITIONS AND RADAR CHARACTERISTICS OF A NON-MESOCYCLONE WATERSPOUT IN SOUTH CHINA
-
摘要: 利用S波段双偏振雷达、风廓线雷达、L波段探空雷达、区域自动站等观测资料和ERA5再分析资料, 对2019年5月26日发生在华南地区一次季风暴雨中海上龙卷过程的大气条件和雷达特征进行了详细分析。(1)低层辐合、高层辐散、中层短波槽东移的环流特征为龙卷的对流风暴提供了有利的大尺度动力抬升条件, 与大多数陆龙卷的形成机制相似。(2)该龙卷形成的环境条件也与一般非中气旋陆龙卷近似, 具有中等大小的对流有效位能, 对流抑制能量接近0, 为该对流风暴发生发展提供了热力条件, 具有发生龙卷的潜势; 强0~1 km低层风垂直切变和0~6 km深层风垂直切变为该对流风暴发展提供了动力条件, 其中低层风垂直切变远高于过去对陆龙卷低层风垂直切变统计的下限。(3)雷达发现: 龙卷出现前后, TVS(Tornadic Vortex Signature)雷达产品多次定位提醒, 但中气旋产品并未有提醒, 有一定示警作用; 径向速度产品揭示了龙卷正负速度对的发展变化; 龙卷低层旋转速度大值区多位于带状回波前沿, 对应的差分反射率ZDR减小, 相关系数CC较低, 有利于确定龙卷的持续时间和影响范围。Abstract: Using data from S-band dual-polarization radars, boundary layer wind profiler radars, and Lband sounding radars, observational data from automatic surface weather stations, and ERA5 reanalysis data, the present study analyzes the atmospheric conditions and radar characteristics of a waterspout on May 26, 2019 in South China. The results show that: (1) Similar to the formation mechanism of most tornadoes, the low-level convergence, high-level divergence and eastward movement of the middle-level shortwave trough provided favorable conditions for the large-scale dynamic uplift of the convective storms of the waterspout. (2) The environmental conditions of the waterspout were also similar to those of general non-mesocyclone tornadoes. It had medium-sized convective available potential energy and its convective suppression energy was close to 0, providing thermal conditions for the occurrence and development of the convective storm. The strong 0~1 km low-level wind vertical shear and the 0~6 km deep-level wind vertical shear provided dynamic conditions for the development of the convective storm, and the low-level wind vertical shear was much higher than the previous statistical lower limit of the low-level wind vertical shear of land tornadoes. (3) Radar data shows that: (a) Tornadic vortex signature(TVS) has a certain warning effect as it reminded the location of the waterspout for many times, but the mesocyclone products did not. (b) Radial velocity product revealed the development of the positive and negative velocity pairs of the waterspout. (c) The large value area of the waterspout low-level rotation velocity was mostly located at the bow echo front, the corresponding differential reflectivity ZDR decreased, and the correlation coefficient CC was low, which may help predict the duration and influence range of the waterspout.
-
Key words:
- waterspout /
- TVS /
- storm relative helicity /
- dual polarization radar /
- South China
-
图 1 目击者拍摄龙卷实景(拍摄地见图 3)
表 1 2019年5月26日02—08时阳江探空站对流参数
时间 CAPE/(J/kg) K指数/℃ CIN/(J/kg) 0~1 km风垂直切变/(10-3s-1) 0~6 km风垂直切变/(10-3s-1) SRH/(m2/s2) LCL/m 02时 405.7 38 73.6 2.0 9.6 83.09 996 08时 992.9 34 0 10.5 6.7 65.97 996 表 2 2019年5月26日10:54—13:00龙卷涡旋距海面高度特征变化
时间 ID 方位/° 距离/km 特征底高/km 特征顶高/km 10:54 T3 177 37 0.6 3.0 11:00 T3 175 36 0.6 2.9 11:54 C8 153 41 0.7 3.3 12:06 C8 151 41 0.6 3.2 12:18 C8 146 40 0.6 3.3 12:30 WO 157 34 0.6 2.6 12:36 WO/EO/C8 155/110/139 37/57/42 0.6/0.9/0.7 2.9/2.8/2.7 12:48 EO/BO 107/149 59/40 0.9/0.6 2.8/3.0 13:00 EO 104 59 0.9 2.0 -
[1] 孟智勇, 张福青, 罗德海, 等. 新中国成立70年来的中国大气科学研究: 天气篇[J]. 中国科学: 地球科学, 2019, 49(12): 1 875-1 918. [2] DAVIES-JONES R, TRAPP R J, BLUESTEIN H B. Tornadoes and tornadic storms. severe convective storms[J]. Amer Meteor Soc, 2001, 28(50): 167-221. [3] JOHNS R H, DOSWELLⅢC A. Severe local storms forecasting[J]. Wea Forecasting, 1992, 7(4): 588-612. [4] MOLLER A R. Severe local storms forecasting||Doswell Ⅲ C A. Severe Convective Storms[C]. Boston, MA: Amer Meteor Soc, 2001: 433-480. [5] 范雯杰, 俞小鼎. 中国龙卷的时空分布特征[J]. 气象, 2015, 41(7): 793-805. [6] CHEN J Y, CAI X H, WANG H Y, et al. Tornado climatology of China[J]. Int J Climatol, 2018, 38(5): 2 478-2 489. [7] 白兰强, 孟智勇, SUEKI K, 等. 中国热带气旋龙卷的气候统计特征(2006~2018)[J]. 中国科学: 地球科学, 2020, 50(5): 619-634. [8] HILL E L, MALKIN W, SCHULZ JR W A. Tornadoes associated with cyclones of tropical origin-practical features[J]. J Appl Meteor, 1966, 5(6): 745-763. [9] MCCAUL E W. Buoyancy and shear characteristics of hurricane tornado environments[J]. Mon Wea Rev, 1991, 119(8): 1 954-1 978. [10] 吴芳芳, 俞小鼎, 张志刚, 等. 苏北地区超级单体风暴环境条件与雷达回波特征[J]. 气象学报, 2013, 71(2): 209-227. [11] 黄先香, 俞小鼎, 炎利军, 等. 广东两次台风龙卷的环境背景和雷达回波对比[J]. 应用气象学报, 2018, 29(1): 70-83. [12] 徐学义, 赵振东, 梁红新. 三次非超级单体龙卷风暴多普勒雷达特征对比分析[J]. 高原气象, 2014, 33(4): 1 164-1 172. [13] 刁秀广, 万明波, 高留喜, 等. 非超级单体龙卷风暴多普勒天气雷达产品特征及预警[J]. 气象, 2014, 40(6): 668-677. [14] TRAPP R J, STUMPF G J, MANROSS K L. A reassessment of the percentage of tornadic mesocyclones[J]. Wea Forecasting, 2005, 20(4): 23-34. [15] WAKIMOTO R M, CAI H. Analysis of a nontornadic storm during VORTEX 95[J]. Mon Wea Rev, 2000, 128(3): 565-592. [16] 俞小鼎, 王迎春, 陈明轩, 等. 新一代天气雷达与强对流天气预警[J]. 高原气象, 2005, 24(3): 456-464. [17] 俞小鼎, 郑媛媛, 张爱民, 等. 安徽一次强烈龙卷的多普勒天气雷达分析[J]. 高原气象, 2006, 25(5): 914-924. [18] 郑媛媛, 朱红芳, 方翔, 等. 强龙卷超级单体风暴特征分析与预警研究[J]. 高原气象, 2009, 28(3): 617-625. [19] 俞小鼎, 郑永光. 中国当代强对流天气研究与业务进展[J]. 气象学报, 2020, 78(3): 391-418. [20] 李峰, 李柏, 唐晓文, 等. 近20年美国龙卷探测研究进展—对我国龙卷风研究的启示[J]. 气象, 2020, 46(2): 245-256. [21] TANJA R, IVUŠIĆS, PRTENJAK M T, et al. Waterspout forecasting method over the eastern adriatic using a high-resolution numerical weather model[J]. Pure and Applied Geophysics, 2018, 175(11): 3 759-3 778. [22] RODRÍGUEZ O, BECH J, ARÚS J, et al. An overview of tornado and waterspout events in Catalonia(2000-2019)[J]. Atmospheric Research, 2021, 250(1): 1-19. [23] 王炳赟, 魏鸣, 范广洲, 等. 1522强台风"彩虹"螺旋雨带中衍生龙卷的超级单体演变与机理研究Ⅰ: 谱宽和速度[J]. 热带气象学报, 2018, 34(4): 472-480. [24] CHAN P W, TSE S M, JEFFREY C, et al. Analysis of a waterspout at Zhuhai, China, on June 12, 2019[J]. Meteorological Applications, 2020, 27(2): 1-14. [25] HON K K, TSE S M, CHAN P W, et al. Observation and numerical simulation of a weak waterspout at Hong Kong International Airport[J]. Meteorological Applications, 2021, 28(1): 1-16. [26] 杨伟, 方阳, 蒋帅, 等. 2017年8月13日东洞庭湖水龙卷特征[J]. 应用气象学报, 2020, 31(3): 328-338. [27] 周淑玲, 闫景鹏, 丛美环. 11月初北黄海一次海龙卷风暴的中尺度特征分析[J]. 海洋气象学报, 2020, 40(4): 42-51. [28] 植江玲, 张伟强, 黄先香. "山竹"(1822)台风外围佛山强龙卷天气过程观测分析[J]. 气象与减灾研究, 2019, 42(4): 251-260. [29] THOMPSON R L, EDWARDS R, HART J A. An assessment of supercell and tornado forecast parameters with RUC-2 model close proximity soundings[M]. 2014: 12. [30] 陈元昭, 俞小鼎, 陈训来, 等. 2015年5月华南一次龙卷过程观测分析[J]. 应用气象学报, 2016, 27(3): 334-341. [31] BROOKS H E, LEE J W, CRAVEN J P. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data[J]. Atmospheric Research, 2003, 67(3): 73-94. [32] 姚叶青, 俞小鼎, 郝莹, 等. 两次强龙卷过程的环境背景场和多普勒雷达资料的对比分析[J]. 热带气象学报, 2007, 23(5): 483-490. [33] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征[J]. 应用气象学报, 2020, 31(6): 706-718. [34] DAVIES-JONES R. Streamwise vorticity: the origin of updraft rotation in supercell storms[J]. J Atmos Sci, 1984, 41(20): 2 991-3 006. [35] 周后福, 施丹平, 刁秀广, 等. 2013年7月7日苏皖龙卷环境场与雷达特征分析[J]. 干旱气象, 2014, 32(3): 415-423. [36] BROWN R A, LEMON L R, BURGESS D W. Tornado detection by pulsed doppler radar[J]. Mon Wea Rev, 1978, 106(1): 29-38. [37] KUMJIAN M R, RYZHKOV A V. Polarimetric signatures in supercell thunderstorms[J]. J Appl Meteor Climatol, 2008, 47(7): 1 940-1 961. [38] HOUSER J L, BLUESTEIN H B, SNYDER J C. A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado[J]. Mon Wea Rev, 2016, 144(11): 4 101-4 130. [39] RYZHKOV A V, SCHUUR T J, BURGESS D W, et al. Polarimetric tornado detection[J]. J Appl Meteor, 2005, 44(5): 557-570. [40] 黄先香, 炎利军, 蔡康龙, 等. 2018年中国龙卷活动特征[J]. 气象科技进展, 2019, 9(1): 50-55. [41] 黄先香, 俞小鼎, 炎利军, 等. 1804号台风"艾云尼"龙卷分析[J]. 气象学报, 2019, 77(4): 645-661. [42] 陈海涛, 张晶, 姚文, 等. 辽宁营口2019-08-16龙卷过程双偏振雷达特征分析[J]. 陕西气象, 2020(6): 9-14. [43] 朱江山, 刘娟, 边智, 等. 一次龙卷生成中风暴单体合并和涡旋特征的雷达观测研究[J]. 气象, 2015, 41(2): 182-191. -