EVALUATION OF SPATIO-TEMPORAL PARAMETERS OF FORECASTS FROM GRAPES_GZ3KM MODEL: WITH SPECIFIC REFERENCE TO NON-TYPHOON PRECIPITATION DURING THE WARM SEASON IN 2019 IN HAINAN ISLAND
-
摘要: 利用基于目标诊断的空间检验方法(MODE)和时空检验方法(MTD)评估了华南3 km高分辨率区域数值模式(GRAPES_GZ3 km)对2019年海南岛暖季非台降水预报性能, 结果显示: (1)模式24 h累积降水预报的空间分布范围偏大、降水强度偏强; (2)模式逐小时降水预报的平均质心总体偏西和偏北, 降水出现时间总体偏早1~3 h, 结束时间总体偏晚2~4 h, 降水持续时间偏长; 预报的降水目标数量偏多, 与实况一致均存在着主峰和次峰形态的昼夜分布特征, 但预报的昼间主峰出现时间比实况偏早2 h; 预报的短时强降水出现频次总体偏多。相对于传统的预报和观测点对点检验评估方法, MODE和MTD方法具有捕捉模式预报偏差特征的优势。
-
关键词:
- 目标诊断 /
- 空间检验 /
- 时空检验 /
- 高分辨率区域数值模式
Abstract: The present study used the method for object-based diagnostic evaluation(MODE) and the time dimension version MODE Time Domain(MTD) to evaluate the performance of non-typhoon precipitation forecast from the GRAPES_GZ3 km high-resolution regional numerical model. The non-typhoon precipitation referred to the one that happened during the warm season in 2019 in Hainan Island. The results showed that: (1) The spatial distribution range of the model's 24 h cumulative precipitation forecast was too large and the precipitation intensity was relatively strong; (2) The average centroid of hourly precipitation forecast from the model was generally westward and northward, and the start time of precipitation was generally 1~3 h earlier and the end time was generally 2~4 h later; the precipitation duration was longer. The forecast rainfall target number was more than the actual number; the day and night distribution features of the main peak and the sub-peak were consistent in the forecast and observation, but the main peak in the day was predicted to appear 2 hours earlier than that the observed.The frequency of short-time heavy rainfall forecast was generally more than the observed. Compared with the point to point evaluation of traditional forecast and observation, MODE and MTD methods have the advantage of capturing the characteristics of model forecast deviations.-
Key words:
- target diagnosis /
- MODE /
- MTD /
- high-resolution regional numerical model
-
图 5 GRAPES_GZ 3 km模式2019年5月21日08:00起报的24 h降水分布(a)及该时次预报≥10 mm(c)、≥25 mm(e)、≥50mm(g)降水空间匹配的降水目标;实况2019年5月21日08:00—22日08:00的24 h累积降水分布(b)及该时次实况≥10 mm(d)、≥25 mm(f)、≥50 mm(h)降水空间匹配的降水目标;GRAPES_GZ 3 km模式2019年5月22日08:00起报的24 h降水分布(i)及该时次预报≥10 mm(k)、≥25 mm(m)、≥50 mm(o)降水空间匹配的降水目标;实况2019年5月22日08:00—23日08:00的24 h累积降水分布(j)及该时次实况≥10 mm(l)、≥25 mm(n)、≥50 mm(p)降水空间匹配的降水目标
图 10 0第一类降水(实况降水的持续时间为1~4 h)(a、b、m、n)、第二类降水(实况降水的持续时间为5~8 h)(c、d、o、p)、第三类降水(实况降水的持续时间为9~12 h)(e、f、q、r)、第四类降水(实况降水的持续时间为13~16 h)(g、h、s、t)、第五类降水(实况降水的持续时间为17~24 h)(i、j、u、v)对应的预报(a、c、e、g、i:小时雨强≥0.1 mm; m、o、q、s、u:小时雨强≥20mm)和实况(b、d、f、h、j:小时雨强≥0.1 mm; n、p、r、t、v:小时雨强≥20 mm)降水频次空间分布对比,以及预报(k:小时雨强≥0.1 mm; w:小时雨强≥20 mm)、实况(l:小时雨强≥0.1mm; x:小时雨强≥20 mm)对所有降水的降水频次空间分布对比
表 1 降水个例的MODE检验结果属性表
预报时间 目标对象 长度/km 宽度/km 轴角/° 面积格点数 降水强度50%/mm 降水强度90%/mm 总收益 预报 实况 预报 实况 预报 实况 预报 实况 预报 实况 预报 实况 2019年
5月21日
08:00≥10 mm—1 46.7 53.0 28.8 36.6 34.8 30.6 855 926 26.3 25.0 61.5 50.1 1.00 ≥25 mm—1 44.4 43.4 25.0 24.7 34.7 38.8 483 513 39.6 35.7 71.9 55.9 1.00 ≥50 mm—1 14.1 4.4 9.5 3.4 49.6 -15.2 63 9 68.6 61.3 84.9 71.1 0.86 ≥50 mm—2 3.0 23.0 3.0 3.6 90.0 12.5 7 16 69.3 66.7 73.0 82.2 0.66 ≥50 mm—3 1.0 1.0 1.0 1.0 0.0 0.0 1 1 74.2 62.8 74.2 62.8 0.73 2019年
5月22日
08:00≥10 mm—1 46.0 19.1 19.9 13.3 40.7 34.1 528 625 19.8 19.5 50.2 47.0 1.00 ≥25 mm—1 5.7 3.0 4.2 2.0 45.0 90.0 14 6 43.0 33.3 52.5 38.2 0.93 ≥25 mm—2 17.7 19.1 14.1 13.3 45.4 32.3 149 172 41.4 41.4 71.9 67.8 0.91 ≥50 mm—1 8.0 10.1 5.8 7.1 -22.2 1.0 27 50 74.1 63.6 94.0 79.4 0.71 -
[1] 蒋贤玲, 任福民, 马柱国, 等. 2014年两次路径相似热带气旋降水特征及其成因的对比[J]. 地球物理学报, 2017, 60(4): 1 305-1 320. [2] 刘少军, 张京红, 何政伟, 等. 地形因子对海南岛台风降水分布影响的估算[J]. 自然灾害学报, 2011, 20(2): 196-199. [3] 冯文, 吴俞, 赵付竹, 等. 海南岛不同强弱秋汛期暴雨的环流形势和动力特征分析[J]. 气象科学, 2017, 37(6): 784-796. [4] 冯文, 周玲丽, 肖潺, 等. 海南岛秋汛期降水的时空分布特点及其环流特征分析[J]. 热带气象学报, 2016, 32(4): 533-545. [5] 潘留杰, 张宏芳, 陈小婷, 等. 基于邻域法的高分辨率模式降水的预报能力分析[J]. 热带气象学报, 2015, 31(5): 632-642. [6] 张博, 赵滨. 一种集成风向风速的风场空间检验方法[J]. 应用气象学报, 2019, 30(2): 154-163. [7] AHIJEVYCH D, GILLELAND E, BARBARA G B, et al. Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts[J]. Wea Forecasting, 2009, 24(6): 1 485-1 497. [8] ELIZABETH E. Neighborhood verification: A strategy for rewarding close forecasts[J]. Wea Forecasting, 2009, 24(6): 1 498-1 510. [9] DAVIS C A, BROWN B, BULLOCK R. Object-based veri fi cation of precipitation forecasts. Part Ⅰ: Methodology and application to mesoscale rain areas[J]. Mon Wea Rev, 2006, 134(7): 1 772-1 784. [10] DAVIS C A, BROWN B, BULLOCK R. Object-based verification of precipitation forecasts. Part Ⅱ: Application to convective rain systems[J]. Mon Wea Rev, 2006, 134(7): 1 785-1 795. [11] SKOK G, TRIBBIA J, RAKOVEC J, et al. Object-based analysis of satellite-derived precipitation systems over the low-and midlatitude Pacific Ocean[J]. Mon Wea Rev, 2009, 137(10): 3 196-3 218. [12] EBERT E, GALLUS JR W. Toward better understanding of the contiguous rain area(CRA)method for spatial forecast verification[J]. Wea Forecasting, 2009, 24(5): 1 401-1 415. [13] 唐文苑, 郑永光, 张小雯. 基于FSS的高分辨率模式华北对流预报能力评估. 应用气象学报, 2018, 29(5): 513-523. [14] 王国荣, 陈敏, 由凤春, 等. 基于对象诊断的空间检验方法(MODE)[J]. 气象科技, 2014, 42(04): 652-656. [15] 潘留杰, 薛春芳, 张宏芳, 等. 三种高分辨率格点降水预报检验方法的对比[J]. 气候与环境研究, 2017, 22(01): 45-58. [16] 姜晓曼. 2014年夏季长江中下游地区降水预报检验[D]. 南京: 南京大学, 2016. [17] 陈笑, 赵东, 何晓凤, 等. 基于MODE对模式预报强风风场的检验分析[J]. 气象, 2018, 44(8): 1 009-1 019. [18] DAVIS C A, BROWN B, BULLOCK R, et al. The Method for Object-Based Diagnostic Evaluation(MODE)applied to numerical forecasts from the 2005 NSSL/SPC Spring Program[J]. Wea Forecasting, 2009, 24(5): 1 252-1 267. [19] JOHNSON A, WANG X G, KONG F Y, et al. Object-Based Evaluation of the Impact of Horizontal Grid Spacing on Convection-Allowing Forecasts[J]. Mon Wea Rev, 2013, 141(10): 3 413-3 425. [20] DUDA J D, GALLUS W A. The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF[J]. Wea Forecasting, 2013, 28(4): 994-1 018. [21] SKOK G, TRIBBIA J, RAKOVEC J. Object-based analysis and verification of WRF model precipitation in the low-and midlatitude pacific Ocean[J]. Mon Wea Rev, 2010, 138(12): 4 561-4 575. [22] CAI H, DUMAIS R E. Object-based evaluation of a numerical weather prediction Model's performance through forecast storm characteristic analysis[J]. Wea Forecasting, 2015, 30(6): 1 451-1 468. [23] CLARK A J, BULLOCK R G, JENSEN T L, et al. Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models[J]. Wea Forecasting, 2014, 29(3): 517-542. [24] 徐同, 张蕾, 李佳, 等. MODE-TD检验方法在上海快速更新同化业务预报系统中的初步应用[J]. 沙漠与绿洲气象, 2020, 14(5): 1-10. [25] 陈子通, 徐道生, 戴光丰, 等. 热带高分辨模式(TRAMS-V3.0)技术方案及其系统预报性能[J]. 热带气象学报, 2020, 36(4): 1-11. [26] 崔园园. CMA陆面数据同化系统产品在青藏高原及其周边的适用性评估[D]. 南京: 南京信息工程大学, 2018. [27] 张振州, 蔡旭晖, 宋宇, 等. 海南岛地区海陆风的统计分析和数值模拟研究[J]. 热带气象学报, 2014, 30(2): 270-280. [28] 王静. 海南岛海陆风演变特征的观测分析研究[D]. 南京: 南京信息工程大学, 2015. -