Observation of the 19 June 2022 Tornado by X-Band Polarimetric Phased Array Radar in Foshan, Guangdong
-
摘要: 利用X波段双极化相控阵雷达等多源观测资料,分析了2022年6月19日早晨广东佛山超级单体龙卷的环境条件和对流风暴的结构及演变特征。龙卷母体风暴是在强西南季风天气背景下的一条东北-西南向飑线南端发展起来的。环境条件具备较大对流有效位能、低抬升凝结高度和强垂直风切变等有利于超级单体龙卷发生发展的热力和动力条件;低空风暴相对螺旋度、超级单体复合指数和强龙卷指数的显著增强对超级单体龙卷的发生有较好指示意义。具有高时空分辨率的佛山南海X波段双极化相控阵雷达探测到了龙卷母体微型超级单体的发展过程和龙卷涡旋的演变特征:对流单体在前侧低层入流的加强下逐渐形成钩状回波和反射率弱回波空洞;中气旋首先在2.5 km附近高度形成后向低层伸展,随着后侧下沉气流的加强,低层涡旋旋转增强,当低层中气旋旋转速度超过22 m · s-1(强中气旋)且直径紧缩至1.5 km以内时,龙卷即将触地,龙卷涡旋特征(TVS)和龙卷碎片特征(TDS)出现是龙卷触地的主要特征,龙卷发生在反射率弱回波空洞、TVS和TDS附近。
-
关键词:
- X波段双极化相控阵雷达 /
- 超级单体龙卷 /
- 龙卷涡旋特征 /
- 龙卷碎片特征 /
- 反射率弱回波空洞
Abstract: Based on the data of an X-band polarimetric phased array radar and other multi-source observation data, we present in detail the environmental conditions and evolution of the radar signatures of an EF1 tornado that took place in Foshan, Guangdong on 19 June 2022. The tornado was spawned from a supercell that developed at the southern end of a squall line, which developed in an active southwesterly airflow environment after the onset of the southwest monsoon. The ambient atmosphere had all thermal and dynamic conditions that were conducive to the occurrence and development of supercell and tornado, such as strong convective instability energy, low lifting condensation level and strong vertical wind shear. The significant enhancement of the low-level storm relative helicity, supercell composite parameter and significant tornado parameter had a good indication for the occurrence of a supercell tornado. A polarimetric phased array radar with high spatial and temporal resolution at Nanhai detected the development process of a mini-supercell and the evolution characteristics of a tornado vortex. The convective storm gradually formed a hook echo and a reflectivity hole with the strengthening of a front low-level inflow. The mesocyclone formed at a height of more than 2.5 km and then extended to the lower level. With the strengthening of rear-flank downdrafts, the vortex rotation at the lower level was enhanced. When the rotation speed of the low-level mesocyclone exceeded 22 m · s-1 (strong mesocyclone) and the diameter contracted to less than 1.5 km, the tornado was about to touch the ground. The appearance of tornado vortex signature (TVS) and tornadic debris signature (TDS) is the main feature of tornado occurrence. The tornado occurred near the reflectivity hole, TVS and TDS.-
Key words:
- X-band polarimetric phased array radar /
- supercell tornado /
- TVS /
- TDS /
- reflectivity hole
-
表 1 南海X波段相控阵雷达和广州S波段多普勒雷达主要参数
雷达参数 X-band S-band 最大探测距离/km 6000.00% 46000.00% 时间分辨率/s 6000.00% 36000.00% 最大不模糊速度 ±20 m · s-1 ±27 m · s-1 体扫模式 水平:0~360 °垂直:0.9~61.2 °(68个仰角,角度间隔0.9 °) VCP21 发射机峰值功率/W 40000.00% 650 000 脉冲宽度/μs 1~100 667.00% 脉冲重复频率/Hz 1 000~4 000 322~1 304 径向最大分辨率/m 3000.00% 25000.00% 表 2 2022年6月18日20:00—19日08:00清远探空站环境参数
时间 CAPE/(J·kg-1) SRH0~1 km/(m2· s-2) BWD0~6 km/(m · s-1) BWD0~1 km/(m · s-1) LCL/m CIN/(J·kg-1) 18日20:00 2 636 109 15 11 171 15 19日08:00 501 195 23 20 147 6 -
[1] 俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006: 297-305. [2] 范雯杰, 俞小鼎. 中国龙卷的时空分布特征[J]. 气象, 2015, 41(7): 793-805. [3] 俞小鼎, 赵娟, 范雯杰. 中国龙卷的时空分布与关键环境参数特征[J]. 热带气象学报, 2021, 37(5/6): 681-692. [4] 郑永光, 刘菲凡, 张恒进. 中国龙卷研究进展[J]. 气象, 2021, 47(11): 1 319-1 335. [5] 俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展[J]. 气象学报, 2012, 70(3): 311-337. [6] DAVIES-JONES R P, TRAPP R J, BLUESTEIN H B. Tornadoes and tornadic storms[M]//Doswell Ⅲ C A. Severe Convective Storms. Boston, MA: American Meteorological Society, 2001: 167-221. [7] 黄先香, 俞小鼎, 炎利军, 等. 珠江三角洲台风龙卷的活动特征及环境条件分析[J]. 气象, 2019, 45(6): 777-790. [8] 白兰强, 孟智勇, SUEKI K, 等. 中国热带气旋龙卷的气候统计特征(2006~2018)[J]. 中国科学: 地球科学, 2020, 50(5): 619-634. [9] 郑媛媛, 张备, 王啸华, 等. 台风龙卷的环境背景和雷达回波结构分析[J]. 气象, 2015, 41(8): 942-952. [10] 王炳赟, 魏鸣, 范广洲, 等. 1522强台风"彩虹"螺旋雨带中衍生龙卷的超级单体演变与机理研究Ⅰ: 谱宽和速度[J]. 热带气象学报, 2018, 34(4): 472-480. [11] 王炳赟, 魏鸣, 范广洲, 等. 1522强台风"彩虹"螺旋雨带中衍生龙卷的超级单体演变与机理研究Ⅱ: 回波结构和钩状回波形成机理[J]. 热带气象学报, 2018, 34(4): 481-488. [12] 赵海军. 山东一次台风龙卷过程灾调及环境和天气雷达特征分析[J]. 热带气象学报, 2022, 38(3): 343-352. [13] 黄先香, 俞小鼎, 炎利军, 等. 广东两次台风龙卷的环境背景和雷达回波对比[J]. 应用气象学报, 2018, 29(1): 70-83. [14] 黄先香, 炎利军, 王硕甫, 等. 1822号"山竹"台风龙卷过程观测与预警分析[J]. 热带气象学报, 2019, 35(4): 458-469. [15] 黄先香, 俞小鼎, 炎利军, 等. 珠江三角洲台风龙卷的活动特征及环境条件分析[J]. 气象, 2019, 45(6): 777-790. [16] 黄先香, 俞小鼎, 炎利军, 等. 1804号台风"艾云尼"龙卷分析[J]. 气象学报, 2019, 77(4): 645-661. [17] 李彩玲, 炎利军, 李兆慧, 等. 1522号台风"彩虹"外围佛山强龙卷特征分析[J]. 热带气象学报, 2016, 32(3): 416-424. [18] 李彩玲, 吴乃庚, 王硕甫, 等. 台风"艾云尼"(2018)外围两次近距离龙卷的环境条件和雷达特征[J]. 热带气象学报, 2019, 35(4): 446- 457. [19] 李兆慧, 王东海, 麦雪湖, 等. 2015年10月4日佛山龙卷过程的观测分析[J]. 气象学报, 2017, 75(2): 288-313. [20] 王福侠, 俞小鼎, 薛学武, 等. 2021年7月21日保定清苑龙卷雷达观测和环境条件分析[J]. 热带气象学报, 2023, 39(5): 664-679. [21] 谌志刚, 李海燕, 肖柳斯, 等. 两次台风衍生龙卷的环境背景和雷达特征对比分析[J]. 气象科学, 2021, 41(1): 99-107. [22] BAI L Q, MENG Z Y, ZHOU R L, et al. Radar-based characteristics and formation environment of supercells in the landfalling Typhoon Mujigae in 2015[J]. Adv Atmos Sci, 2022, 39(5): 802-818. [23] 黄先香, 俞小鼎, 炎利军, 等. 2019年4月13日广东徐闻强龙卷天气分析[J]. 气象, 2021, 47(2): 216-229. [24] 黄先香, 炎利军, 顾伯辉, 等. 广东一次超级单体强龙卷的形成环境和观测特征分析[J]. 热带气象学报, 2021, 37(5/6): 721-732. [25] 陈元昭, 俞小鼎, 陈训来, 等. 2015年5月华南一次龙卷过程观测分析[J]. 应用气象学报, 2016, 27(3): 334-341. [26] 植江玲, 黄先香, 顾伯辉, 等. 广东两次超级单体导致不同类型强风天气对比分析[J]. 气象, 2022, 48(7): 813-825. [27] PAZMANY A L, MEAD J B, BLUESTEIN H B, et al. A mobile rapid-scanning X-band polarimetric(RaXPol)Doppler radar system[J]. J Atmos Ocean Tech, 2013, 30(7): 1 398-1 413. [28] FRENCH M M, BLUESTEIN H B, POPSTEFANIJA H, et al. Reexamining the vertical development of tornadic vortex signatures in supercells[J]. Mon Wea Rev, 2013, 141(12): 4 576-4 601. [29] BLUESTEIN H B, M M FRENCH, I POPSTEFANIJA, et al. A mobile, phased-Array doppler radar for the study of severe convective storms[J]. Bull Amer Meteorol Soc, 2010, 91(5): 579-600. [30] HEINSELMAN P, LADUE D, KINGFIELD D M. Tornado warning decisions using phased-array radar data[J]. Wea Forecasting, 2015, 30 (1): 57-78. [31] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征[J]. 应用气象学报, 2020, 31(6): 706-718. [32] ZHANG Y, BAI L Q, MENG Z Y, et al. Rapid-scan and polarimetric phased-array radar observations of a tornado in the Pearl River Estuary [J]. J Trop Meteor, 2021, 27(1): 80-85. [33] RASMUSSEN E N. Refined supercell and tornado forecast parameters[J]. Wea Forecasting, 2003, 18(3): 530-535. [34] RASMUSSEN E N, BLANCHARD D O. A baseline climatology of sounding derived supercell and tornado forecast parameters[J]. Wea Forecasting, 1998, 13(4): 1 148-1 164. [35] DAVIES-JONES R. Streamwise vorticity: The origin of updraft rotation in supercell storms[J]. J Atmos Sci, 1984, 4l(20): 2 991-3 006. [36] DOWELL D C, BLUESTEIN H B. The 8 June 1995 McLean, Texas, storm. Part Ⅰ: Observations of cyclic tornadogenesis[J]. Mon Wea Rev, 2002, 130(11): 2 626-2 648. [37] DOWELL D C, BLUESTEIN H B. The 8 June 1995 McLean, Texas, storm. Part Ⅱ: Cyclic tornado formation, maintenance, and dissipation [J]. Mon Wea Rev, 2002, 130(11): 2 649-2 670. [38] 黎立页, 孟智勇, 白兰强, 等. 2017-08-11内蒙赤峰EF4级山地多发龙卷灾调与成因分析[J]. 热带气象学报, 2023, 39(4): 507-521. [39] RYZHKOV A V, SCHUUR T J, BURGESS D W, et al. Polarimetric tornado detection[J]. J Appl Meteor, 2005, 44(5): 557-570. [40] KUMJIAN M R, RYZHKOV A V. Polarimetric signatures in supercell thunderstorms[J]. J Appl Meteor, 2008, 47(7): 1 940-1 961. [41] 黄先香, 伍志方, 炎利军, 等. 珠江三角洲台风龙卷预警技术与2018年两次龙卷预警试验[J]. 气象科技, 2020, 48(1): 88-96. -