PRELIMINARY APPLICATION AND EVALUATION OF OPTIMAL THREAT SCORE METHOD IN HOURLY PRECIPITATION FORECAST
-
摘要: 使用2020年3—9月逐时更新的CMA广东短临3 km数值模式(CMA-GD(R3)模式)1~12 h逐小时降水量资料,利用最优TS评分订正方法(OTS)对逐小时降水量进行分级订正,并分别从整体和分类型降水过程预报订正效果进行了检验和对比评估。结果表明:从整体预报订正性能来看,通过OTS方法对CMA-GD(R3)模式订正后,对于≥1 mm/h及以上量级的降水,OTS均有较好的订正能力,并且随着雨强的增加,其TS评分的改善比率越大;同时,OTS可有效减少各个预报时效的漏报率和空报率,其中漏报率减小更加明显,表现出明显的湿偏差(空报偏多)。从三类暴雨过程逐时降水预报订正效果来看,通过OTS订正之后,对于≥1 mm/h的降水,OTS对三类暴雨类型均有正的订正能力。其中在0.1 mm、1 mm、10 mm、20 mm、35 mm、50 mm 6个量级上,季风型的逐时降水预报表现最好,6个量级的TS评分值分别为0.403、0.232、0.053、0.023、0.009和0.004;在5 mm量级上锋面型的逐时降水预报表现最优,其TS值为0.102。从改善效果来看,经过OTS订正后,在1 mm量级上台风型改善率最大,在5 mm和10 mm量级上锋面型改善率最大,在20 mm、35 mm和50 mm量级上季风型改善率最大。
-
关键词:
- 最优TS评分订正方法 /
- 降水分级订正 /
- 逐时降水检验 /
- 对比评估
Abstract: Based on the hourly precipitation data from the short-term 3 km resolution hourly updated CMA-GD(R3) model simulation, the present study examined the hourly data of precipitation during MarchSeptember in 2020, evaluated observational data and data from the CMA-GD(R3) model simulation and compared these data in terms of overall correction and categorized precipitation correction using the optimal threat score (OTS) method. The results are as follows: In terms of overall correction, the CMA-GD (R3) data of precipitation with rain rate ≥ 1 mm/h is well corrected by using the OTS method, and the improvement becomes greater with the increase of rainfall intensity. Using the OTS method, we find the decrease of omission rate is more than that of false alarm rate, and the significant bias is either greater than or equal to 1. As for the correction of hourly precipitation forecast of three types of heavy rainfall (frontal rain, monsoon rain, and typhoon-induced rain), the OTS method can help produce positive correction for precipitation with rain rate ≥ 1 mm/h. The hourly precipitation forecast of monsoon rain is the best on the rain rate categories of 0.1 mm/h, 1 mm/h, 10 mm/h, 20 mm/h, 35 mm/h and 50 mm/h, and their respective threat scores are 0.403, 0.232, 0.053, 0.023, 0.009 and 0.004; on the rain rate category of 5 mm/h, the hourly precipitation forecast of frontal rain is the best, and its threat score is 0.102. Moreover, on the rain rate category of 1 mm / h, the improvement of typhoon-induced rain forecast is the most significant; on the rain rate categories of 5 mm/h and 10 mm/h, the improvement of frontal rain forecast is the largest; on the rain rate categories of 20 mm/h, 35 mm/h, and 50 mm/h, the improvement of monsoon rain forecast is the greatest. -
图 5 同图 4,但为ETS评分
图 8 同图 7,但为ETS评分
表 1 2020年3—9月CMA-GD(R3)模式订正前后不同量级降水1~12 h预报时效的平均评分
检验方法 ≥0.1 mm/h ≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h ≥35 mm/h ≥50 mm/h TS 订正前 0.258 0.140 0.053 0.027 0.011 0.003 0.001 订正后 0.258 0.141 0.058 0.031 0.014 0.005 0.002 PO 订正前 0.511 0.686 0.868 0.928 0.969 0.993 0.998 订正后 0.510 0.622 0.749 0.837 0.914 0.955 0.986 FAR 订正前 0.647 0.798 0.919 0.959 0.984 0.996 0.999 订正后 0.647 0.817 0.931 0.964 0.983 0.995 0.998 Bias 订正前 1.385 1.559 1.631 1.768 1.875 1.736 1.292 订正后 1.386 2.064 3.616 4.505 5.041 8.126 6.392 表 2 三类不同类型降水订正前后不同量级降水1~12 h预报时效的平均评分
降水类型 ≥0.1 mm/h ≥1 mm/h ≥5 mm/h ≥10 mm/h ≥20 mm/h ≥35 mm/h ≥50 mm/h 锋面 TS 订正前 0.384 0.222 0.081 0.036 0.017 0.004 0.000 订正后 0.384 0.227 0.102 0.048 0.019 0.007 0.003 PO 订正前 0.441 0.617 0.835 0.917 0.960 0.991 1.000 订正后 0.441 0.581 0.698 0.807 0.907 0.946 0.984 FAR 订正前 0.450 0.654 0.865 0.941 0.971 0.994 1.000 订正后 0.450 0.669 0.866 0.940 0.976 0.992 0.997 Bias 订正前 1.016 1.106 1.223 1.404 1.374 1.538 1.512 订正后 1.016 1.265 2.260 3.225 3.891 6.665 5.124 季风 TS 订正前 0.403 0.224 0.086 0.041 0.014 0.004 0.001 订正后 0.403 0.232 0.101 0.053 0.023 0.009 0.004 PO 订正前 0.402 0.585 0.804 0.895 0.962 0.991 0.998 订正后 0.402 0.538 0.671 0.776 0.874 0.936 0.982 FAR 订正前 0.448 0.672 0.868 0.937 0.978 0.993 0.998 订正后 0.448 0.681 0.872 0.935 0.973 0.990 0.995 Bias 订正前 1.083 1.263 1.485 1.662 1.694 1.362 0.839 订正后 1.083 1.448 2.570 3.466 4.613 6.687 3.649 台风 TS 订正前 0.398 0.178 0.060 0.026 0.010 0.000 0.000 订正后 0.398 0.205 0.072 0.034 0.013 0.003 0.002 PO 订正前 0.359 0.660 0.872 0.943 0.977 1.000 1.000 订正后 0.359 0.514 0.705 0.839 0.943 0.972 0.985 FAR 订正前 0.489 0.729 0.899 0.953 0.982 1.000 1.000 订正后 0.489 0.738 0.913 0.959 0.984 0.996 0.998 Bias 订正前 1.255 1.256 1.265 1.219 1.252 1.014 0.288 订正后 1.255 1.858 3.393 3.882 3.608 7.287 8.803 -
[1] APPLEQUIST S, GAHRS G E, PFEFFER R L, et al. Comparison of methodologies for probabilistic quantitative precipitation forecasting [J]. Wea Forecasting, 2002, 17(4): 783-799. [2] 毕宝贵, 代刊, 王毅, 等. 定量降水预报技术进展[J]. 应用气象学报, 2016, 27(5): 534-549. [3] ROEBBER P J, SCHULTZ D M, COLLE B A, et al. Toward improved prediction: high-resolution and ensemble modeling systems in operations[J]. Wea Forecasting, 2004, 19(5): 936-949. [4] ZHONG S X, CHEN Z T, XU D S, et al. Evaluating and improving wind forecasts over South China: The role of orographic parameterization in the GRAPES model[J]. Adv Atmos Sci, 2018, 35(6): 713-722. [5] 陈子通, 徐道生, 戴光丰, 等. 热带高分辨率模式(TRAMS-V3.0)技术方案及其系统预报性能[J]. 热带气象学报, 2020, 36(4): 444-454. [6] 刘英, 柳崇健, 徐辉. 藉物理耗散技术改进强降水数值模拟的初步研究[J]. 高原气象, 2006, 25(4): 651-657. [7] 王雨, 闫之辉. 2002年汛期(5—9月)主客观降水预报检验[J]. 热带气象学报, 2006, 22(4): 331-339. [8] 汪瑛, 胡胜, 涂静, 等. 2016—2020年广东省定量降水预报检验评估[J]. 热带气象学报, 2021, 37(2): 154-165. [9] KRISHNAMURTI T N, SAGADEVAN A D, Chakraborty A, et al. Improving multimodel weather forecast of monsoon rain over china using FSU superensemble[J]. Adv Atmos Sci, 2009, 26(5): 813-839. [10] 孙靖, 程光光, 张小玲. 一种改进的数值预报降水偏差订正方法及应用[J]. 应用气象学报, 2015, 26(2): 173-184. [11] BRUCE A V. Spread calibration of ensemble MOS forecasts[J]. Mon Wea Rev, 2013, 141(7): 2 467-2 482. [12] 曹萍萍, 陈朝平, 徐栋夫, 等. 基于集合预报的四川夏季强降水订正试验[J]. 热带气象学报, 2017, 33(1): 111-118. [13] 吴启树, 韩美, 刘铭, 等. 基于评分最优化的模式降水预报订正算法对比[J]. 应用气象学报, 2017, 28(3): 306-317. [14] 牛若芸. 基于最优概率的中期延伸期过程累计降水量分级订正预报[J]. 热带气象学报, 2019, 35(6): 721-731. [15] 李欣韵, 余锦华, 梁信忠. 基于CWRF模式夏季日降水量的订正技术对比[J]. 热带气象学报, 2019, 35(6): 842-851. [16] ZHONG S X, CHEN Z T, XU D S, et al. A review on GRAPES-TMM operational model system at Guangzhou Regional Meteorological Center[J]. J Trop Meteor, 2020, 26(4): 495-504. [17] 林良勋, 冯业荣, 黄忠, 等. 广东省天气预报技术手册[M]. 北京: 气象出版社, 2006. [18] 李俊, 杜钧, 陈超君. 降水偏差订正的频率(或面积)匹配方法介绍和分析[J]. 气象, 2014, 40(5): 580-588. [19] JOLLIFFE I T, STEPHENSON D B. 预报检验[M]. 李应林, 译. 北京: 气象出版社, 2016: 58-68. [20] 涂静, 黄晓莹, 张华龙. 2019年度气温和降水预报时空检验[J]. 广东气象, 2020, 42(1): 40-43. -