SURFACE WIND MINIMUM ALONG THE SST FRONTS AND ITS CAUS
-
摘要: 利用2000—2008年AVHRR、QuickSCAT等高分辨率卫星观测资料和CFSR再分析资料,分析了墨西哥湾流区、东海黑潮锋区、巴西-马尔维纳斯合流区和厄加勒斯回流区等全球主要海洋锋区的大气响应特征,发现在上述海洋锋区普遍存在海表矢量风速的最小值分布,并对这一现象的产生原因进行探讨。研究指出:夏季(6—8月)墨西哥湾流区、6月东海黑潮锋区附近有明显的矢量风速最小值分布,而巴西-马尔维纳斯合流区及厄加勒斯回流区海洋锋附近则终年存在矢量风速最小值。产生这一现象的条件是大尺度气压背景场梯度方向与海洋锋附近海表温度梯度方向接近一致,其物理过程为:海洋锋暖(冷)水区一侧上空对应有低(高)气压,由此产生的局地气压梯度与大尺度背景气压梯度方向接近相反,导致锋区附近叠加后的气压梯度最小,海表风速因此也最小。同时,摩擦作用使海表风偏向低压一侧,于是沿锋区走向(跨锋区走向)的风速分量差在暖水区一侧产生气旋性切变涡度(风速辐合),进而造成上升运动和强降水,而该分量差在冷水区一侧则产生相反的大气响应特征。Abstract: By using QuickSCAT and AVHRR high resolution satellite data and CFSR reanalysis data during 2000—2008, the atmospheric response to the SST fronts in the Gulf Stream (GS), the East China Sea Kuroshio (ESK), the Brazil-Malvinas Confluence (BMC) and the Agulhas Return Current (ARC) is investigated. The minimum surface wind is found to be universal along the above fronts, which occurs in JJA for the GS, June for ESK, year-round both for the BMC and ARC. The pre-condition for generating the minimum surface wind is that the large-scale sea level pressure (SLP) gradient (SLPG) is basically in the same direction with the local sea surface temperature gradient near the fronts. This can be explained as follows according to the SLP adjustment mechanism: the warmer (colder) side of the fronts will produce lower (higher) SLP, and such a local SLPG will counteract with the large-scale SLPG, thus leading to the minimum resultant SLPG as well as the minimum surface wind along the fronts. Furthermore, the surface wind will turn to the lower SLP side due to the friction. The difference between components of surface wind along (across) the fronts will produce cyclonic shear vorticity (convergence in wind speed) over the warmer side of the fronts, thereby forming ascending motion and enhanced precipitation there. The atmospheric response is opposite to that over the colder side of the fronts.
-
Key words:
- oceanic front /
- pressure adjustment mechanism /
- sea surface vector wind /
- minimum
-
图 3 同图 2,但为海表面10 m散度(彩色阴影,单位:10-5 s-1)
图 5 同图 2,但为高通滤波后的海表面10 m涡度 (填色区,单位:10-5 s-1)
-
[1] XIE S P. Satellite observations of cool ocean-atmosphere interaction[J]. Bull Amer Meteor Soc, 2004, 85(2): 195-208. [2] CHELTON D B, SCHLAX M G, FREILICH M H, et al. Satellite measurements reveal persistent small-scale eatures in ocean winds[J]. Science, 2004, 303(5 660): 978-983. [3] CHELTON D B, XIE S P. Coupled ocean-atmosphere interaction at oceanic mesoscales[J]. Oceanography, 2010, 23(4): 52-69. [4] SMALL R J, DESZOEKE S P, XIE S P, et al. Air-sea interaction over ocean fronts and eddies[J]. Dyn Atmos Oceans, 2008, 45(3): 274-319. [5] XIE S P, HAFNER J, TANIMOTO Y, et al. Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas[J]. Geophys Res Lett, 2002, 29: L2228, doi:10.1029/2002GL015884. [6] WHITE W B, ANNIS J L. Coupling of extratropical mesoscale eddies in the ocean to westerly winds in the atmospheric boundary layer[J]. J Physical Oceanography, 2003, 33(5): 1 095-1 107. [7] VECCHI G A, XIE S P, FISCHER A S. Ocean-atmosphere covariability in the Western Arabian Sea[J]. J Clim, 2004, 17(6): 1 213-1 224. [8] TOKINAGA H, TANIMOTO Y, XIE S P. SST-induced surface wind variations over the Brazil-Malvinas confluence: Satellite and in situ observations[J]. J Clim, 2005, 18(17): 3 470-3 482. [9] O'NEILL L W, CHELTON D B, ESBENSEN S K, et al. High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current[J]. J Clim, 2005, 18(14): 2 706-2 723. [10] 徐海明, 王琳玮, 何金海.卫星资料揭示的春季黑潮海区海洋对大气的影响及其机制研究[J].科学通报, 2008, 53(4): 463-470. [11] MINOBE S, KUWANO-YOSHIDA A, KOMORI N, et al. Influence of the Gulf Stream on the troposphere[J]. Nature, 2008, 452(7 184): 206-209. [12] 徐蜜蜜, 徐海明, 朱素行.春季我国东部海洋温度锋区对大气的强迫作用及其机制研究[J].大气科学, 2010, 34(6): 1 071-1 085. [13] FRANKIGNOUL C. Sea surface temperature anomalies, planetary waves and air-sea feed-back in the middle latitudes[J]. Rev Geophys, 1985, 23(4): 357-390. [14] KWON Y O, ALEXANDER M A, BOND N A, et al. Role of the gulf stream and kuroshio-oyashio systems in large-scale atmosphere ocean interaction: A review[J]. J Clim, 2010, 23(12): 3 249-3 281. [15] NAMIAS J, CAYAN D R. Large-scale air-sea interactions and short-period climatic fluctuations[J]. Science, 1981, 214(4 523): 869-876. [16] 李博, 周天军, 林鹏飞, 等.冬季北太平洋海表面热通量异常和海气相互作用的耦合模式模拟[J].气象学报, 2011, 69(1): 52-63. [17] 刘敬武. 东海黑潮区海洋锋的区域气候学效应[D]//中国海洋大学硕士学位论文. 青岛: 中国海洋大学, 2010: 11. [18] SASAKI Y N, MINOBE S, ASAI T, et al. Influence of the Kuroshio in the East China Sea on the early summer (Baiu) rain[J]. J Clim, 2012, 25(19): 6 627-6 645. [19] XU H, XU M, XIE S-P, et al. Deep atmospheric response to the spring Kuroshio Current over the East China Sea[J]. J Clim, 2011, 24(18): 4 959-4 972. [20] LIU J W, ZHANG S P, XIE S P. Two types of surface wind response to the East China Sea Kuroshio front[J]. J Clim, 2013, 26(21): 8 616-8 627. [21] MA J, XU H, DONG C, et al. Atmospheric responses to oceanic eddies in the Kuroshio Extension region[J]. J Geophys Res Atmos, 2015, 120, doi:10.1002/2014JD022930. [22] MINOBE S, MIYASHITA M, KUWANO-YOSHIDA A, et al. Atmospheric response to the Gulf Stream: seasonal variations[J]. J Clim, 2010, 23(13): 3 699-3 719. [23] WALLACE J M, MITCHELL T P, DESER C. The influence of sea surface temperature on sea surface wind in the eastern equatorial Pacific: Seasonal and interannual variability[J]. J Clim, 1989, 2(12): 1 492-1 499. [24] HAYES S P, MCPHADEN M J, WALLACE J M. The influence of sea surface temperature on surface wind in the eastern equatorial Pacific[J]. J Clim, 1989, 2(12): 1 500-1 506. [25] HASHIZUME H, XIE S P, FUJIWARA M, et al. Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific[J]. J Clim, 2002, 15(23): 3 379-3393. [26] NONAKA M, XIE S P. Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback[J]. J Clim, 2003, 16(9): 104-1 413. [27] TOKINAGA H, TANIMOTO Y, NONAKA M, et al. Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure[J]. J Geophys Res Lett, 2006, 33: L04703, doi:10.1029/2005GL025102. [28] PERLIN N, DE SZOEKE S P, CHELTON D B, et al.Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations[J]. Mon Wea Rev, 2014, 142(11): 4 284-4 307. [29] KOSEKI S, WATANABE M. Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio Extension[J]. J Clim, 2010, 23(10): 2 492-2 507. [30] LINDZEN R S, NIGAM S. On the role of sea surface temperature gradients in forcing low level wind and convergence in the tropics[J]. J Atmos Sci, 1987, 44(17): 2 418-2 436. [31] TOKINAGA H, TANIMOTO Y, XIE S P, et al. Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations[J]. J Clim, 2009, 22(16): 4 241-4 260. [32] XU H, TOKINAGA H, XIE S P. Atmospheric effects of the Kuroshio large meander during 2004—05[J]. J Clim, 2010, 23(17): 4 704-4 715. [33] SHIMADA T, MINOBE S. Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data[J]. J Geophys Res Lett, 2011, 38: L06704, doi:10.1029/2010GL046625. [34] XU M-M, XU H-M. Atmospheric responses to kuroshio SST front in the East China Sea under different prevailing winds in winter and spring[J]. J Clim, 2015, 28(8): 3 191-3 211. [35] 李智, 刘宣飞, 李传浩.大气对春季东海黑潮锋响应的气压调整机制分析[J].大气科学, 2015, 39 (6): 1 081-1 094. -