对华南对流云中过冷云水-飞机积冰的直接气象因子的中尺度数值预报试验
MESOSCALE NUMERICAL FORECAST FOR SUPERCOOLED CLOUD WATER IN CONVECTIVE CLOUD OF SOUTH CHINA ——THE MAIN METEOROLOGICAL FACTOR RESPONSIBLE FOR AIRCRAFT ICING
-
摘要: 利用"海峡两岸及临近地区暴雨试验"(HUAMEX)加密观测资料和MM5湿物理显式方案模拟研究了1998.5.23~24自粤北移向南海海岸冷锋前对流云团中的云物理过程,给出了造成飞机积冰的直接气象因子-云中过冷水的空间分布和随时间演变及其与水汽、冰相(冰晶、霰、雪)、垂直气流的相互关系。结果显示,当对流较强因而产生冰相后,由于冰粒子与过冷水间的碰并及过冷水滴蒸发,过冷水迅速减少;当对流较弱因而只有液相云水而无冰相加入时,过冷云水维持。模拟试验显示具有完善湿物理显式方案的高分辨非静力平衡中尺度数值模式MM5可用于对飞机积冰的直接气象因子-云中过冷水的数值预报。Abstract: The heavy rainfall IOP case of HUAMEX project during 23~24 May 1998 was simulated by using the non-hydrostatic meso-scale model MM5 (V2) with Reisner抯 explicit scheme for moist physical processes. Results show the distribution and evolution of super-cooled liquid water in cloud which is the main meteorological factor causing the aircraft icing, and its interaction with water vapor, ice-phase water (ice crystal, snow, graupel) and updraft flow. Results show that super cooled cloud water may exist if the convection is not strong enough to produce ice phase particles. Only when ice phase particles appear associated with strong convection, the super cooled cloud water could be deduced by evaporation, collision and frozen. The case study shows it is possible to simulate and forecast the super-cooled cloud water by using the high resolution non-hydrostatic meso-scale model MM5 with explicit scheme for moist physical processes.
-
Key words:
- super-cooled cloud water /
- aircraft icing /
- mesoscale numerical forecast
-
[1] SAND W R, COOPER W A, POLITOVICH M K, et al.Icing conditions encountered by a research aircraft[J].J Clim Appl Meteorol,1984, 23: 1427-1440. [2] COOPER W A, SAND W R, POLITOVICH M K, et al.Effects of icing on performance of research aircraft[J].J Aircraft, 1984, 21: 708-715. [3] POLITOVICH M K.Aircraft icing caused by larger supercooled droplets[J].J Appl Meteorol, 1989, 28: 856-868. [4] COLE J, SAND W.Statistical study of aircraft icing accidents.Proceedings of the 29th aerospace science meeting, Reno, NV.American Institute of Aeronautics and Astronautics, Washington D C, 1991.AIAA 91-0558. [5] SCHULTZ P, POLITOVICH M K.Toward the improvement of aircraft-icing forecasts for the continental United States[J].Weather and Forecasting, 1992, 7: 491-500. [6] THOMPSON G, BRUINTJES R T, BROWN B G, et al.Intercomparisons of in-flight icing algorithms: Part I: WISP94 real-time icing prediction and evaluation program[J].Weather and Forecasting, 1997, 12: 878-889. [7] REISNER J, RASMUSSEN R M, BRUINTJES R T.Explicit forecast of supercooled liquid water in winter storms using the MM5 mesoscale model[J].Q J R Meteorol Soc, 1998, 124: 1071-1107. [8] GRELL G A, et al.A description of the fifth-generation Penn State / NCAR mesoscale model (MM5).NCAR/TN- 398+STR NCAR technical note, 1994.138. [9] 王鹏云, 肖乾广,林永辉,等.卫星遥感地表植被及其在华南暴雨中尺度数值模拟中的应用试验[J].应用气象学报, 2001, 12: 287-296. [10] 陈万奎, 严采蘩.冰相雨胚转化水汽密度差的实验研究[J].应用气象学报,2001, 12(增刊): 23-29. [11] 王洪庆, 张焱, 陶祖钰, 等.五维大型复杂数据集计算机可视化[J].自然科学进展,1998, 8: 742-747. -

计量
- 文章访问数: 914
- HTML全文浏览量: 0
- PDF下载量: 1275
- 被引次数: 0