ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多普勒雷达四维变分分析系统概述

顾建峰 薛纪善 颜宏

顾建峰, 薛纪善, 颜宏. 多普勒雷达四维变分分析系统概述[J]. 热带气象学报, 2004, (1): 1-13.
引用本文: 顾建峰, 薛纪善, 颜宏. 多普勒雷达四维变分分析系统概述[J]. 热带气象学报, 2004, (1): 1-13.
GU Jian-feng, XUE Ji-shan, YAN Hong. A SUMMARIZATION OF THE FOUR-DIMENSIONAL VARIATIONAL DOPPLER RADAR ANALYSIS SYSTEM[J]. Journal of Tropical Meteorology, 2004, (1): 1-13.
Citation: GU Jian-feng, XUE Ji-shan, YAN Hong. A SUMMARIZATION OF THE FOUR-DIMENSIONAL VARIATIONAL DOPPLER RADAR ANALYSIS SYSTEM[J]. Journal of Tropical Meteorology, 2004, (1): 1-13.

多普勒雷达四维变分分析系统概述

基金项目: 国家自然科学基金项目40175028,40233036资助

A SUMMARIZATION OF THE FOUR-DIMENSIONAL VARIATIONAL DOPPLER RADAR ANALYSIS SYSTEM

  • 摘要: NCAR(National Center for Atmospheric Research)在1990年代发展起来的多普勒雷达四维变分分析系统(The four-dimensional VariationalDoppler Radar Analysis System,简称 VDRAS),采用四维变分(4D-VAR)资料同化技术和云尺度数值模式及其伴随模式,利用单部或多部多普勒雷达观测资料,反演对流尺度风暴的动力结构和微物理结构,包括三维风场、温度场、气压场和微物理量场。本文介绍了VDRAS的基本原理、个例试验和实时运行等概况,旨在随着我国新一代天气雷达建设的逐步完成,为应用我国新一代天气雷达的观测资料,开展4D-VAR方法的研究和应用提供一些参考或借鉴。

     

  • [1] LHERMITTE R M, ATLAS D. Precipitation motion by pulse Doppler radar[C].Preprints, Ninth Weather Radar Conf, KansasCity, MO, Amer Meteor Soc, 1961. 218-223.
    [2] BROWNING K A, WEXLER R. A determination of kinematic properties of a wind field using Doppler radar[J].J ApplMeteor, 1968, 7: 105-113.
    [3] WALDTEUFEL P, CORBIN H. On the analysis of single-Doppler radar data[J].J Appl Meteor, 1979, 18: 532-542.
    [4] KOSCIELNY A J, DOVIAK R J, Rabin R. Statistical considerations in the estimation of divergence from single-Dopplerradar and application to prestorm boundary-layer observations[J].J Appl Meteor, 1982, 21: 197-210.
    [5] 陶祖钰. 从单Doppler速度场反演风矢量场的VAP方法[J].气象学报, 1992, 50: 81-90.
    [6] 郎需兴, 魏鸣, 葛文忠, 等. 一种新的单多普勒雷达风场反演方法[J].气象科学, 2001, 21: 417-424.
    [7] 姜海燕, 葛润生. 一种新的单部多普勒雷达反演技术[J].应用气象学报, 1997, 8: 219-223.
    [8] ZAWADZKI I I. Statistical properties of precipitation patterns[J].J Appl Meteor, 1973, 12: 459-472.
    [9] QIU C J, XU Q. A simple adjoint method of wind analysis for single-Doppler data[J].J Atmos Oceanic Technol, 1992, 9:588-598.
    [10] XU Q, QIU C J, YU J X. Adjoint-method retrievals of low-altitude wind fields from single-Doppler reflectivitymeasured during PhoenixⅡ[J].J Atmos Oceanic Technol, 1994, 11: 275-288.
    [11] XU Q, QIU C J, YU J X. Adjoint-method retrievals of low-altitude wind fields from single-Doppler wind data[J] .J Atmos Oceanic Technol, 1994, 11: 579-585.
    [12] LAROCHE S, ZAWADZKI I. A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data[J].J Atmos Sci, 1994, 51: 2664-2684.
    [13] SHAPIRO A, ELLIS S, SHAW J. Single-Doppler velocity retrievals with PhoenixⅡdata: Clear air and microburstwind retrievals in the planetary boundary layer[J].J Atmos Sci, 1995, 52: 1265-1287.
    [14] XU Q, QIU C J. Adjoint-method retrievals of low-altitude wind fields from single-Doppler reflectivity and radial-winddata[J].J Atmos Oceanic Technol, 1995, 12: 1111-1119.
    [15] 邱崇践, XU Q. 由单Doppler雷达资料反演水平风场的简单共轭函数方法的改进方案[J].应用气象学报, 1996, 7:421-430.
    [16] 邱崇践, 余金香, Xu Q. 多普勒雷达资料对中尺度系统短期预报的改进[J].气象学报, 2000, 58: 244-249.
    [17] GAL-CHEN T. A method for the initialization of the anelastic equations: Implications for matching modelswith observation[J].Mon Wea Rev, 1978, 106: 587-606.
    [18] HANE C E, SCOTT B C. Temperature and pressure perturbations within convective clouds derived from detailed airmotions: Preliminary testings[J].Mon Wea Rev, 1978, 106: 654-661.
    [19] HANE C E, WILHELMSON R B, GAL-CHEN T. Retrieval of thermodynamic variables within deep convectiveclouds: Experiments in three dimensions[J].Mon Wea Rev, 1981, 109: 564-576.
    [20] GAL-CHEN T, KROPFLI R A. Buoyancy and pressure perturbations derived from dual-Doppler radar observations ofthe planetary boundary layer: applications for matching models with observations[J].J Atmos Sci, 1984, 41: 3007-3020.
    [21] ROUX F. Retrieval of thermodynamic fields from multiple-Doppler radar data using the equation of motion andthe thermodynamic equation[J].Mon Wea Rev, 1985, 113: 2142-2157.
    [22] HAUSER D, AMAYENC P. Retrieval of cloud water and water vapor contents from Doppler-radar data in a tropicalsquall line[J].J Atmos Sci, 1986, 43: 823-838.
    [23] RUTLEDGE S A, HOBBS P V. The mesoscale and microscale structure and organization of clouds and precipitation inmid-latitude cyclones. Ⅷ: A model for the "seeder-feeder" process in warm-frontal rainbands[J].J Atmos Sci, 1983,40: 1185-1206.
    [24] RUTLEDGE S A, HOBBS P V. The mesoscale and microscale structure and organization of clouds and precipitation inmid-latitude cyclones. Ⅻ: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands[J] .J Atmos Sci, 1984, 41: 2949-2972.
    [25] ZIEGLER C L. Retrieval of thermal and microphysical variables in observed convective storms. Part Ⅰ: Modeldevelopment and preliminary testing[J].J Atmos Sci, 1985, 42: 1487-1509.
    [26] ZIEGLER C L. Retrieval of thermal and microphysical variables in observed convective storms. Part Ⅱ: Sensitivity ofcloud processes to variation of the microphysical parameterization[J].J Atmos Sci, 1988, 45: 1072-1090.
    [27] LEWIS J M, DERBER J C. The use of adjoint equations to solve a variational adjustment problem withadvective constraints[J].Tellus, 1985, 37A: 309-322.
    [28] TALAGRAND O, COURTIER P. Variational assimilation of meteorological observations with the adjoint vorticityequation.Ⅰ: Theory. Quart[J].J Roy Meteor Soc, 1987, 113: 1311-1328.
    [29] WOLFSBERG D G. Retrieval of three-dimensional wind and temperature fields from single-Doppler radar data[D] .Ph D thesis, University of Oklahoma, 1987, 91.
    [30] KAPITZA H. Numerical experiments with the adjoint of a nonhydrostatic mesoscale model[J].Mon Wea Rev, 1991,119: 2993-3011.
    [31] SUN J, FLICKER D, Lilly D. Recovery of three-dimensional wind and temperature fields from simulated single-Doppler radar data[J].J Atmos Sci, 1991, 48: 876-890.
    [32] SUN J, CROOK N A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud modeland its adjoint. PartⅠ: Model development and simulated data experiments[J].J Atmos Sci, 1997, 54: 1642-1661.
    [33] WU B, VERLINDE J, SUN J. Dynamical and microphysical retrievals from Doppler radar observations of a deepconvective cloud[J].J Atmos Sci, 2000, 57: 262-283.
    [34] SUN J, CROOK N A. Real-time low-level wind and temperature analysis using single WSR-88D data[J].WeaForecasting, 2001, 16: 117-132.
    [35] VERLINDE J, COTTON W R. A critical look at kinematic microphysical retrieval algorithms[C].Preprints, Conf onCloud Physics, San Francisco, CA, Amer Meteor Soc, 1990. 453-457.
    [36] SUN J. Fitting a Cartesian prediction model to radial velocity data from single-Doppler radar[J].J Atmos OceanicTechnol, 1994, 11: 200-204.
    [37] SUN J, CROOK N A. Wind and thermodynamic retrieval from single-Doppler measurements of a gust front observedduring PhoenixⅡ[J].Mon Wea Rev, 1994, 122: 1075-1091.
    [38] VERLINDE J, COTTON W R. Fitting microphysical observations of nonsteady convective clouds to a numerical model:An application of the adjoint technique of data assimilation to a kinematic model[J].Mon Wea Rev, 1993, 121: 2776-2793.
    [39] ORVILLE H D, KOPP F J. Numerical simulation of the life history of a hailstorm[J].J Atmos Sci, 1977, 34: 1596-1618.
    [40] LIN Y L, FARLEY R D, Orville H D. Bulk parameterization of the snow field in a cloud model[J].J Climate ApplMeteor, 1983, 22: 1065-1089.
    [41] TRIPOLI G J, COTTON W R. The use of ice-liquid water potential temperature as a thermodynamic variable indeep atmospheric models[J].Mon Wea Rev, 1981, 109: 1094-1102.
    [42] JING Z, WIENER G. Two-dimensional dealiasing of Doppler velocities[J].J Atmos Oceanic Technol, 1993, 10: 798-808.
    [43] BARNES S. A technique for maximizing details in numerical map analysis[J].J Appl Meteor, 1964, 3: 395-409.
    [44] SUN J, CROOK N A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud modeland its adjoint. PartⅡ: Retrieval experiments of an observed Florida convective storm[J].J Atmos Sci, 1998, 55: 835-852.
    [45] WARNER T T, BRANDES E E, MUELLER C K, et al. Prediction of a flash flood in complex terrain. PartⅠ: Acomparison of rainfall estimates from radar, and very-short-range rainfall simulations from a dynamic modeland an automated algorithmic system[J].J Appl Meteor, 2000, 39: 797-814.
    [46] YATES D N, WARNER T T, LEAVESLEY G H. Prediction of a flash flood in complex terrain. PartⅡ: A comparison offlood discharge simulations using rainfall input from radar, a dynamic model and an automated algorithmic system[J].J Appl Meteor, 2000, 39: 815-825.
    [47] CROOK N A, SUN J. Assimilating radar, surface, and profiler data for the Sydney 2000 forecast demonstration project[J] .J Atmos Oceanic Technol, 2002, 19: 888-898.
  • 加载中
计量
  • 文章访问数:  875
  • HTML全文浏览量:  2
  • PDF下载量:  1629
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-04-21
  • 修回日期:  2003-07-21

目录

    /

    返回文章
    返回