运用改进系统建模法对南海气象数据的建模研究
THE MODEL STUDY OF THE SOUTH CHINA SEA METEOROLOGICAL DATAUSING ENHANCED SYSTEM MODELING METHOD
-
摘要: 在系统建模理论的基础上,运用改进的动态数据建模方法,对南海气象数据中的温度进行建模并验证了模型的适用性。根据模型推导出格林函数、逆函数和自协方差函数等,并讨论了南海气象数据中温度模型的稳定性、可逆性和合理性。对系统的频率特性和谱函数进行分析讨论,并给出建模过程中的一些图像。根据模型的适用性检验发现,对所研究的气象数据而言,ARMA(4,3)模型是最合适的,具有平稳可逆性。所有的建模和分析过程在MATLAB上实现。实验结果表明这种建模方案简便易行,能够快速准确地确定系统的合理模型。Abstract: The paper introduces a dynamic data system modeling method. Using the improved system modeling method, the paper studies the model of the South China Sea temperature data and verifies the model's validity. Then the stability, the reversibility and the correctness are discussed based on the Green function, the inverse function and the autocorrelations function deduced from the model. The paper also analyzes and discusses the frequency properties and the spectrum function. Figures are also shown in the paper. Based on the adaptability test of the model, we can draw the conclusions that the ARMA (4, 3) model is most suitable for the South China Sea Meteorological Data and the model is stable and reversible. All the modeling and analysis procedures are realized by MATLAB software. The result shows that the method is simple and easy to apply in practice. It can be used to determine the rational model quickly and accurately.
-
Key words:
- time series /
- dynamic data system /
- ARMA model /
- meteorological data
-
[1] 丁裕国, 江志红. 气象数据时间序列信号处理[M].北京: 气象出版社, 1998. 1-4. [2] 胡桂荣. AR(1)-MA(1)模型的矩估计及其渐近分布[J].系统工程理论与实践, 2000, 3: 130-134. [3] YOUNG P. Data-based mechanistic modeling generalized sensitivity and dominant mode analysis [J].Computer Physics Communication, 1999, 117: 113-129. [4] 侯晓鸿, 李一智. ARMA(p, q)模型参数初估计新方法研究[J].中南工业大学学报, 1998, 29: 300-302. [5] 刘春霞. 广东热带气旋短期气候预测——相空间相似预报方法的应用[J].热带气象学报,2002,18:83-90. [6] [美] S.M.潘迪特, 吴宪民. 时间序列及系统分析与应用[M].北京:机械工业出版社, 1988. 97-110. 218-220. [7] 金菊良, 杨晓华, 金保明, 等. 遗传门限自回归模型在气象时间序列预测中的应用[J].热带气象学报, 2001, 17:415-422. [8] 吴少敏. AR型非线性时间序列模型的稳定性分析[J].控制与决策, 2000, 15: 305-308. [9] 杨位钦, 顾岚. 时间序列分析与动态数据建模[M].北京:北京理工大学出版社,1988. 168-170.
点击查看大图
计量
- 文章访问数: 762
- HTML全文浏览量: 0
- PDF下载量: 642
- 被引次数: 0