ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rossby参数β在涡旋Rossby波中的作用

邓莲堂 刘式适 徐祥德 付遵涛

邓莲堂, 刘式适, 徐祥德, 付遵涛. Rossby参数β在涡旋Rossby波中的作用[J]. 热带气象学报, 2004, (5): 483-492.
引用本文: 邓莲堂, 刘式适, 徐祥德, 付遵涛. Rossby参数β在涡旋Rossby波中的作用[J]. 热带气象学报, 2004, (5): 483-492.
DENG Lian-tang, LIU Shi-kuo, XU Xiang-de, FU Zun-tao. THE EFFECT OF ROSSBY PARAMETER IN VORTEX ROSSBY WAVES[J]. Journal of Tropical Meteorology, 2004, (5): 483-492.
Citation: DENG Lian-tang, LIU Shi-kuo, XU Xiang-de, FU Zun-tao. THE EFFECT OF ROSSBY PARAMETER IN VORTEX ROSSBY WAVES[J]. Journal of Tropical Meteorology, 2004, (5): 483-492.

Rossby参数β在涡旋Rossby波中的作用

基金项目: 科技部社会公益研究专项基金(No.2001 DIA 20026)资助

THE EFFECT OF ROSSBY PARAMETER IN VORTEX ROSSBY WAVES

  • 摘要: 利用尺度分析方法得到Rossby参数β在强涡旋中有着不可忽略的作用。在无基本气流径向切变的涡旋系统中,在Rossby参数β的作用下有涡旋Rossby波出现。由于涡旋Rossby波存在,从而破坏了涡旋系统的轴对称性,表现出非轴对称特征。在考虑切向基本气流的涡度径向变化时,涡旋Rossby波的频散关系同时包含了切向基本气流涡度径向切变项和β项的作用。一般情况下涡旋Rossby波在切向基本气流涡度径向切变的作用下有向外频散能量的特性,而β项的作用随方位角θ而变化,使涡旋能量频散不对称。

     

  • [1] SIMPSON R H. Exploring the eye of typhoon ''Marge'' 1951[J].Bull Amer Meteor Soc, 1952, 33: 286-298.
    [2] SHEA D J, GRAY W M. The hurricane inner core region. I: Symmetric and asymmetric structure[J].J Atmos Sci, 1973, 30: 1544-1564.
    [3] LEWIS B M, HAWKINS H F. Polygonal eye walls and rainbands in hurricanes[J].Bull Amer Meteor Soc, 1982, 63:1294-1300.
    [4] JORGENSEN D P. Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure ofHurricane Allen (1980) [J].J Atmos Sci, 1984, 41:1287-1311.
    [5] GALL R, TUTTLE J, HILDEBRAND P. Small-scale spiral bands observed in Hurricanes Andrew, Hugo, and Erin[J].Mon Wea Rev, 1998, 126: 1749-1766.
    [6] KUO H C, WILLIAMS R T, CHEN J H. A possible mechanism for the eye rotation of Typhoon Herb[J].J Atmos Sci, 1999,56:1659-1673.
    [7] REASOR P D, MONTGOMERY M T. Low-wavenumber structure and evolution of the hurricane inner core observed byairborne daul-Doppler radar[J].Mon Wea Rev, 2000, 128:1653-1680.
    [8] NEUMAN S, BOYD J G. Hurricane movement and variable locations of high intensity spot in wall cloud radar echo[J].MonWea Rev, 1962, 90: 371-374.
    [9] WILLOUGHBY H E. Nonlinear motion of a shallow-water barotropic vortex[J].J Atmos Sci, 1994, 51: 3722-3744.
    [10] WANG Y, HOLLAND G J. Beta drift of baroclinic vortices. Part II: Diabatic vortices[J].J Atmos Sci, 1996, 53: 1133-1153.
    [11] WANG Y, HOLLAND G J. Tropical cyclone motion and evolution in vertical shear[J].J Atmos Sci, 1996, 53: 3313-3332.
    [12] WILLOUGHBY H E. Temporal changes of the primary circulation in tropical cyclones[J].J Atmos Sci, 1990, 47: 242-264.
    [13] HOLLAND G J, MERRILL R T. On the dynamics of tropical cyclone structure changes[J].Quart J Roy Meteor Soc, 1984,110: 723-745.
    [14] CHALLA M, PFEFFER R L, ZHAO Q, et al. Can eddy fluxes serve as a catalyst for hurricane and typhoonformation?[J] J Atmos Sci, 1998, 55: 2201-2219.
    [15] ABDULLAH A J. The spiral bands of a hurricane: A possible dynamic explanation[J].J Atmos Sci, 1966, 23: 367-375.
    [16] KURIHARA Y, On the development of spiral bands in a tropical cyclone[J].J Atmos Sci, 1976, 33:940-958.
    [17] WILLOUGHBY H E. A possible mechanism for the formation of hurricane rainbands[J].J Atmos Sci, 1978, 35: 836-848.
    [18] MACDONALD N J. The evidence for the existence of Rossby-type waves in the hurricane vortex[J].Tellus, 1968, 20: 138-150.
    [19] GUINN T, SCHUBERT W H. Hurricane spiral bands[J].J Atmos Sci, 1993, 50:3380-3404.
    [20] MONTGOMERY M T, KALLENBACH R J. A theory for vortex Rossby-waves and its application to spiral bands andintensity changes in hurricanes[J].Quart J Roy Meteor Soc, 1997, 123:435-465.
    [21] MONTGOMERY M T, ENAGONIO J. Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasi-geostrophic model[J].J Atmos Sci, 1998, 55: 3176-3207.
    [22] MOLLER J D, MONTGOMERY M T. Vortex Rossby waves and hurricane intensification in a barotropic model[J].J Atmos Sci, 1999, 56: 1674-1687.
    [23] MOLLER J D, MONTGOMERY M T. Tropical cyclone evolution via potential vorticity anomalies in a three-dimensionalbalance model[J].J Atmos Sci, 2000, 57: 3366-3387.
    [24] WANG Y. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model-TCM3.Part I: Model description and control experiment[J].Mon Wea Rev, 2001, 129: 1370-1394.
    [25] SHAPIRO L J,MONTGOMERY M T. A Three-dimensional balance theory for apidly rotating vortex[J].J Atmos Sci,1993, 50: 3322-3335.
    [26] 罗哲贤. β项和非线性平流对台风结构的作用[J].热带气象学报,1994,10: 204-211.
    [27] LUO Z X. Study of effects of β term and nonlinear advection on the structure of tropical cyclone[J].Journal of tropicalmeteorology(in Chinese), 1994, 10: 204-211.
  • 加载中
计量
  • 文章访问数:  1062
  • HTML全文浏览量:  1
  • PDF下载量:  956
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-05-28
  • 修回日期:  2003-08-26

目录

    /

    返回文章
    返回