全球气温变化的多分形谱
MULTIFRACTAL SPECTRA OF GLOBAL TEMPERATURE
-
摘要: 运用计算多分形谱的多分形非趋势波动分析法,研究全球、北半球和中国月平均温度距平的多分形特征。全球气温、北半球气温和中国气温的变化是自相似的多分形;它们都表现出一定的正长程相关性,全球气温的长程相关性最强,北半球次之,中国气温相对最弱;中国气温的最强涨落较北半球气温大,而全球气温的最强涨落最小。Abstract: The multifractal detrended fluctuation analysis method for calculating multifractal singularity spectra is introduced in detail and applied to the study of the multifractal characteristics of the global temperature as well as the temperature anomalies of Northern Hemisphere and China. Temperatures of the global, Northern Hemisphere and China are self-similar multifractals; The positive long-range dependence and behaviors between 1/f noise and brown noise are observed in the three series. And the long-range dependence of the global series is the strongest and the China series is weaker than Northern Hemisphere. In general, the temperature variation of China presents the strongest singularity and the most intensive fluctuation among the three temperature series, and the global temperature shows the strongest regularity and smallest intensive fluctuations.
-
[1] 刘式达,陈炯,刘式适.近百年中国、北半球和南半球气温内在结构比较(Ⅰ)[J].应用气象学报,1999,10:9-15. [2] 陈炯,刘式达,刘式适.近百年中国、北半球和南半球气温内在结构比较(Ⅱ)[J].应用气象学,1999,10:142-147. [3] 刘式达,荣平平,陈炯.气温序列的层次结构[J].气象学报,2000,58:110-114. [4] 严绍谨,彭永清,张永刚.一维气温时间序列的多分形研究[J].热带气象学报,1996,12:207-211. [5] ARNEODO A,BARCRY E,MUZY J F.The thermodynamics of fractals revisited with wavelets[J].Physics A,1995,213: 232-275. [6] HEINZ-OTTTO P, HUTMART J, DIETMAR S. Chaos and fractal-new frontiers of science[M]. New York: Springer Velay,Hamilton Printing Co. Rennselaser, 1997. 921-954. [7] KANTELHARDTA J W, ZSCHIEGNER S A, BUNDE E K, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316:87-114. [8] PENG C K, BULDYREV S V, HAVLIN S, et al. Mosaic organization of DNA nucleotides[J]. Phys Rev E, 1994, 49:1685-1689. [9] BUNDE E K, BUNDE A, HAVLIN S, et al. Analysis of daily temperature fluctuations[J]. Physica A, 1996, 231: 393-396. [10] PELLETIER J D,TURCOTTE D L. Long-range persistence in climatological and hydrological time series analysis, modeling and application to drought hazard assessment[J]. Journal of Hydrology, 1997, 203: 198-208. [11] BUNDE E K, BUNDE A, HAVLIN S, et al. Indication of a universal persistence law governing atmospheric variability[J].Phys Rev Lett, 1998, 81: 729-732. [12] TALKNER P, WEBER R O. Power spectrum and detrended fluctuation analysis: Application to daily temperature[J]. Phys Rev E, 2000, 62: 150-160. [13] GOVINDAN R B, VJUSHIN D, BRENNER S, et al. Long-range correlations and trends in global climate models:comparison with real data[J]. Physica A, 2001, 294: 239-248. [14] GOVINDAN R B, BUNDE A, HAVLIN S, et al. Volatility in atmospheric temperature variability[J]. Physica A, 2003, 318:529-536. [15] PAVLOVA N, SOSNOVTSEVA O V, ZIGANSHIN A R, et al. Multiscality in the dynamics of coupled chaotic systems[J].Physica A, 2002, 316: 233-249. [16] LEE J M, KIN D J, KIM I Y, et al. Detrended Fluctuation Analysis of EEG in sleep apnea using MIT/BIH polysomnography data[J]. Computers in Biology and Medicine, 2002, 32: 37-47. [17] OTT E. Chaos in dynamical systems[M]. Cambridge, UK: Cambridge University Press, 1993. 305-333.
点击查看大图
计量
- 文章访问数: 930
- HTML全文浏览量: 0
- PDF下载量: 1570
- 被引次数: 0