全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能Ⅱ——垂直分辨率的提高及其影响
THE DEVELOPMENT OF GOALS/LASG AGCM AND ITS GLOBAL CLIMATOLOGICAL FEATURES IN CLIMATE SIMULATION Ⅱ——The Increase of Verticall Resulotion and Its Influences
-
摘要: 在第I部分水平分辨率提高的基础上,提高了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室的全球海-陆-气耦合气候系统模式(GOALS/LASG)大气模式分量的垂直分辨率。为减少地形对平流层的影响,并和其它气候模式一致,建立了基于能量守恒和角动量守恒的垂直混合坐标方案,及混合坐标下的半隐式时间积分方案,并对相关的物理过程作必要的调整。尽管主要物理过程不变,但从初步结果来看,对大气垂直结构的模拟更合理;平流层风场和温度场的模拟与观测更接近;降水、海平面气压场的分布及季节变化等特征也有明显改进。Abstract: In this part the vertical resolution of the atmospheric component of the Global Ocean-Atmosphere-Land System Model of LASG (GOALS/LASG) is increased based on the model with increased horizontal resolution in part I of this paper. In order to reduce the influences of topography on the stratosphere as the resolution increased, the energy and angular-momentum conserving hybrid vertical coordinate is established, which is also consistent with other climate models. The hybrid vertical coordinate scheme associated with the semi-implicit method is described in this part, and some related physical schemes in the model are also adjusted. Though the main physical processes remain the same, the primary simulation results show that the vertical structure of atmosphere is more reasonable compared with R42L9 in Part I, and the wind and temperature are more consistestent with the observations. The simulated precipitation and sea surface pressure are also improved obviously.
-
Key words:
- GOALS /
- AGCM /
- model resolution /
- hybrid-coordinate /
- climate simulation
-
[1] 王在志,吴国雄,刘平,等. 全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能Ⅰ--水平分辨率的影响[J]. 热带气象学报,2005,21(3):225-237. [2] KANG I S, JIN K, WANG B, et al. Intercomparison of the climatological variations of Asian summer monsoon precipitationsimulated by 10 GCMs[J]. Cli Dynamics, 2002, 19(4): 383-395. [3] 廖洞贤,朱艳秋. 再论水平和垂直分辨率之间的协调[J]. 气象学报,1995, 53(2): 129-137. [4] 陆维松. 垂直分辨率与水平分辨率协调问题的研究[J]. 南京气象学院学报,1990, 13(3): 274-284. [5] 赵宗慈,罗勇. 区域气候模式在东亚地区的应用研究--垂直分辨率与侧边界对夏季季风降水影响研究[J] .大气科学,1999, 23(5): 522-532. [6] SIMMONS A J, BURRIDGE D M. An energy and angular-momentum conserving vertical finite-difference scheme and hybridvertical coordinates[J]. Mon Wea Rev, 1981, 109(4): 758-766. [7] BOURKE W. A multi-level spectral model I--Formulation and hemispheric integrations[J]. Mon Wea Rev,1974, 102(10): 687-701. [8] HOSKINS B J, SIMMONS A J. A multi-layer spectral model and the semi-implicit method[J]. Quart J Roy Met Soc, 1975,101: 637-655. [9] WU G X, LIU H, ZHAO Y C, et al. A nine-layer atmospheric general circulation model and its performance[J]. AdvancesAtmos Sci, 1996, 13(1): 1-18. [10] PALMER T N, SHUTTS G J, SWINBANK R, et al. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization[J]. Quart J Roy Met Soc,1986, 112: 1001-1039. [11] 钱永甫. 包络地形和重力波拖曳对气候模拟效果的影响[J]. 应用气象学报, 2000, 11(1): 13-20. [12] KALNAY E, COAUTHORS. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Met Soc, 1996, 77(3): 437-471. [13] XIE P, ARKIN P A. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numericalmodel predictions[J]. J Cli, 1996, 9(4): 840-858. [14] SLINGO J M. The development and verification of a cloud prediction scheme for the ECMWF model[J]. Quart J Roy MetSoc, 1987, 113: 899-927. [15] LOUIS J F. A parametric model of vertical eddy fluxes in the atmosphere[J]. Boundary Layer Met, 1979, 17: 187-202.
点击查看大图
计量
- 文章访问数: 952
- HTML全文浏览量: 0
- PDF下载量: 692
- 被引次数: 0